

MIPI CSI-2sm v4.0 Panel Discussion with the MIPI Camera Working Group (Panel)

Haran Thanigasalam, Camera WG Chair, Intel Corporation Natsuko Ibuki, Google, LLC Yuichi Mizutani, Sony Corporation WonSeok Lee, Samsung Electronics

28-29 SEPTEMBER

MIPI.ORG/DEVCON

MOBILE & BEYOND

Agenda

2021

- Evolution of MIPI Imaging Conduit Haran Thanigasalam
- CSI-2 v4.0 AOSC Optimal Transport Mode Natsuko Ibuki
- CSI-2 v4.0 AOSC Smart Transport Mode Yuichi Mizutani

MOBILE & BEYOND

- CSI-2 v4.0 Multi Pixel Compression WonSeok Lee
- Q&A

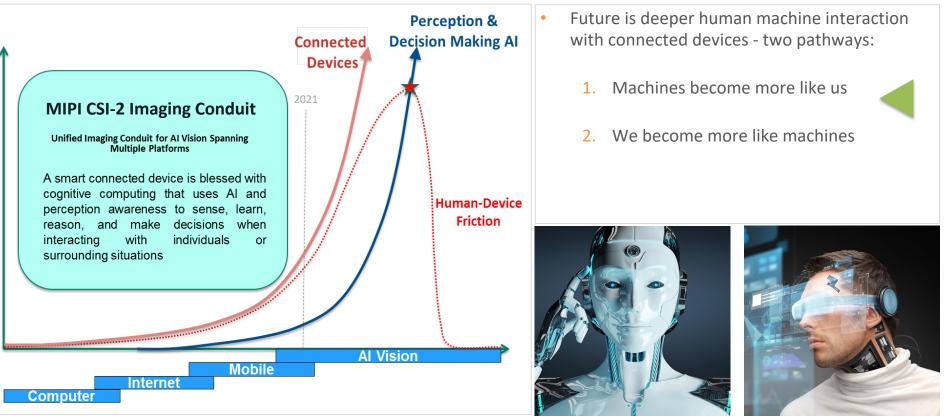
MIPI.ORG/DEVCON

mipi^{DEVCON}

MIPI ALLIANCE DEVELOPERS CONFERENCE

Evolution of Imaging Conduit

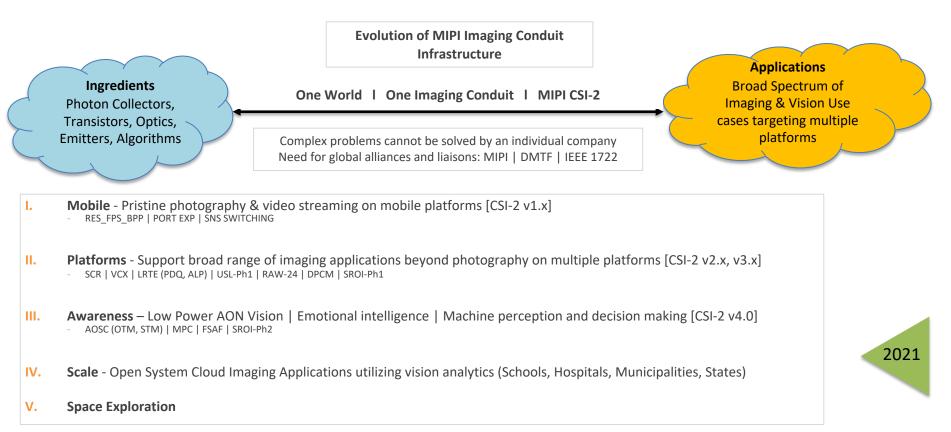
Haran Thanigasalam, Camera WG Chair, Intel Corporation



M@BILE & BEY@ND

28-29

The Big Why & Trajectory



MIPI.ORG/DEVCON

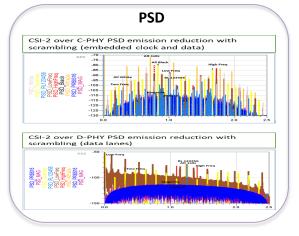
2021

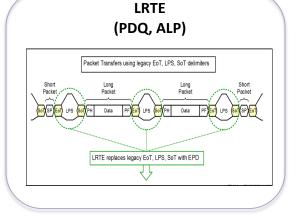
MOBILE & BEYOND

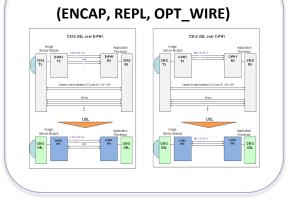
The How & Pathway

MOBILE & BEYOND

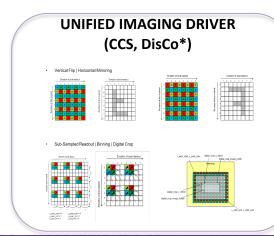
MIPI.ORG/DEVCON

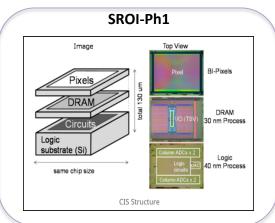

2021

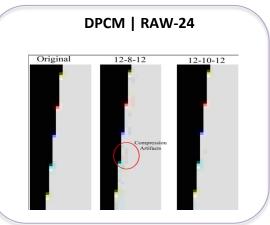

mipi **DEV**CON



What's Done







USL-Ph1

MIPI.ORG/DEVCON

M@BILE & BEY@ND

6

mipi DEVCON

MIPI ALLIANCE DEVELOPERS CONFERENCE

AOSC OTM Natsuko Ibuki, Google, LLC

MIPI.ORG/DEVCON

M@BILE & BEY@ND

28-29

AOSC – Always On Sentinel Conduit

- Low power interface protocol to support always-on cameras that operate in low frame rate and in low resolutions
- Uses MIPI I3C[®] v1.1 SDR, HDR-DDR, or HDR-BT, single lane or multi-lane, to transport image sensor data using CSI-2 like protocol
- VDSP (Vision Digital Signal Processor) is the I3C Host Controller and SNS (Image Sensor) is the I3C Target
- Images can be sent by
 - AoSC transfer only
 - AoSC and C-PHYsm / D-PHYsm simultaneous transfers
 - Switch between AoSC and C-PHYsm / D-PHYsm transfers
- Benefits

2021

- Simple because no C-PHYsm / D-PHYsm needed
- Only requires 2 wires
- Lowest power when used in low frame rate and low resolution
- BW example
 - QVGA 10fps raw10 (8.5 Mbps) can be supported by 1L SDR (11 Mbps effective BW)
 - 720p 10fps raw8 (81 Mbps) can be supported by 4L HDR-BT (95 Mbps effective BW)

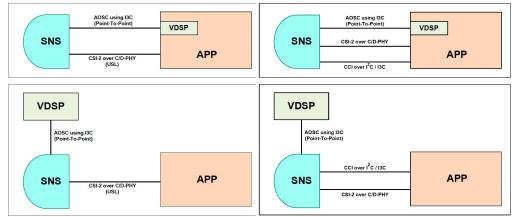


Figure 195 Point-To-Point AOSC Systems with USL Solutions

Figure 196 Point-To-Point AOSC Systems with Non-USL Solutions

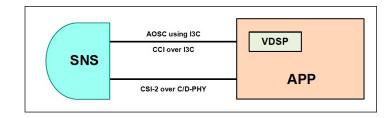


Figure 197 System Supporting AOSC and CCI Operations Over Multi-Drop I3C

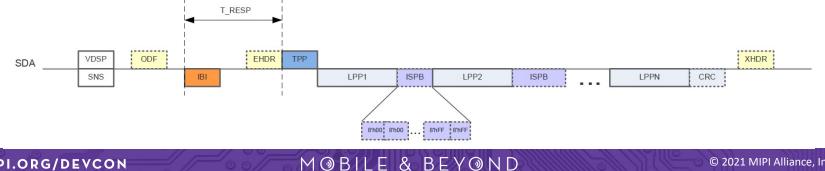
MOBILE & BEYOND

8

AOSC – OTM – Optimal Transport Mode

OTM Details

2021


- One of the 2 modes supported by AoSC (OTM and STM)
- OTM allows for multi-lane and/or HDR operations. ٠
- CCC (Common command code) as commands by VDSP to SNS .
 - ODF (On-Demand Frame, to prepare/send a video frame)
 - EHDR/XHDR (Enter/Exit HDR, to enter/exit HDR mode)
 - **TPP** (Transmit Packet Payload) ٠
- IBI (In-band interrupt)
 - Used by SNS to report status including error status
 - Frame Start IBI, sent when SNS is ready to send data
- LPP# (long packet payload)

MIPI.ORG/DEVCON

- CSI-2 Long Packet content without header or CRC
- Fach LPP contains 1 line worth of data
- ISPB (Interconnect Synchronizing Padding Bytes)
 - Horizontal-Blanking period can be dynamically adjusted by SNS.
 - Used to compensate for difference in image sensor and I3C clock. ٠

AoSC and OTM Features

- Two privacy modes with GPIO override ٠
 - Mode to completely prohibit image sensors from sending any image data or interpretation of the image data to VDSP
 - Mode to allow only the interpretation of the image data (ex. IBI to notify motion detection)
- ODF On Demand Frame vs CSF Continuous Streaming Frame
 - ODF: SNS captures images only when instructed by VDSP
 - CSF: SNS periodically captures images w/o any CCC from VDSP
- Frame Squelching ٠
 - In CSF mode, allows SNS to capture and send image data to VDSP less frequently than programmed FPS.
 - Ex. SNS can be programmed to operate at VGA 30 FPS, but it can be further specified to capture and send 1 frame every 10 frames.

9

mipi DEVCON

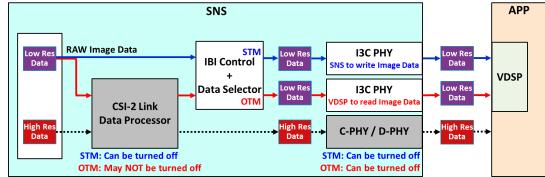
MIPI.ORG/DEVCON

MIPI ALLIANCE DEVELOPERS CONFERENCE

AOSC STM Yuichi Mizutani, Sony Corporation

MOBILE & BEYOND

28-29


AOSC – STM – Smart Transport Mode

Possible use cases for STM to transport:

- Low resolution and low framerate image data from SNS to VDSP as shown in the diagram on the righthand side
- Metadata (Event data) from SNS to VDSP

Possible Power Savings

- The C-PHY / D-PHY layer for CSI-2 can be turned off
- The CSI-2 Link layer processing unit in SNS can also be turned off (subject to the system architecture)

STM Details

2021

- STM support is optional
- Supports I3C SDR mode only
- A single IBI transaction does the all (no Read Request from VDSP is required)
- Nearly unlimited sized payload by Word Count Extension (subject to the VDSP Rx buffer size)
- VDSP may abort the IBI at any time
- Supports the Long Packet Structure for D-PHY as payload
- Metadata (Event data) can be transported by utilizing User Defined STM Types

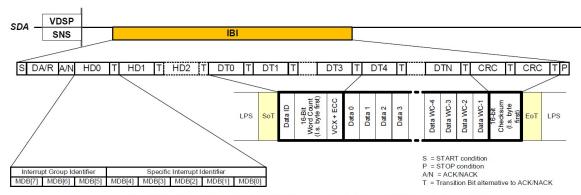


Figure 204 AOSC Smart Transport Mode (STM) Operation for the D-PHY Generic STM Types

mipi[®] DEVCON

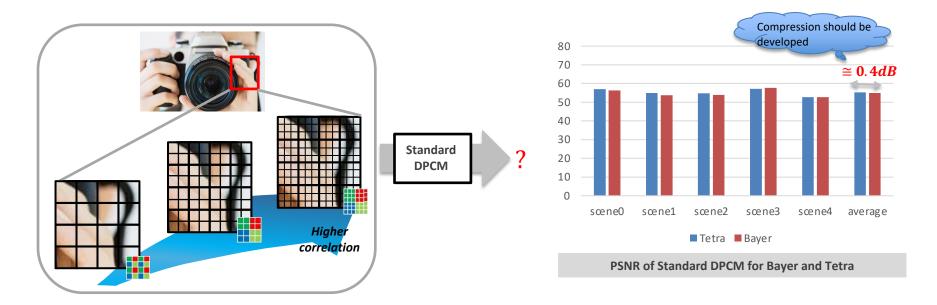
MIPI ALLIANCE DEVELOPERS CONFERENCE

MPC Wonseok Lee, Samsung Electronics, Co.

MIPI.ORG/DEVCON

M@BILE & BEY@ND

28-29



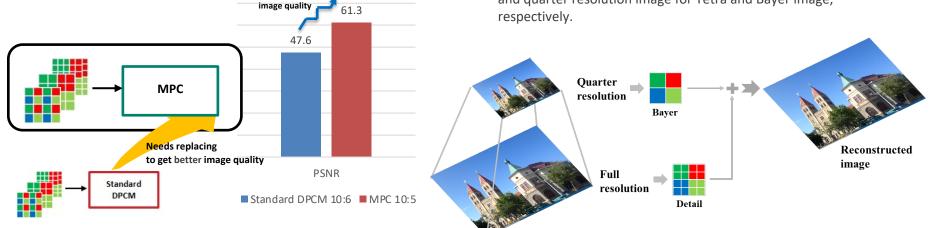
Why new compression standard is needed?

Problem of standard DPCM

2021

• Standard DPCM doesn't fully utilize a higher correlation of neighboring pixels from multi-pixel sensors

Multi-Pixel Compression (MPC) for multi-pixel sensors


High correlation of color channel

 MPC can utilize a higher correlation neighboring pixels from multi-pixel sensors

Better

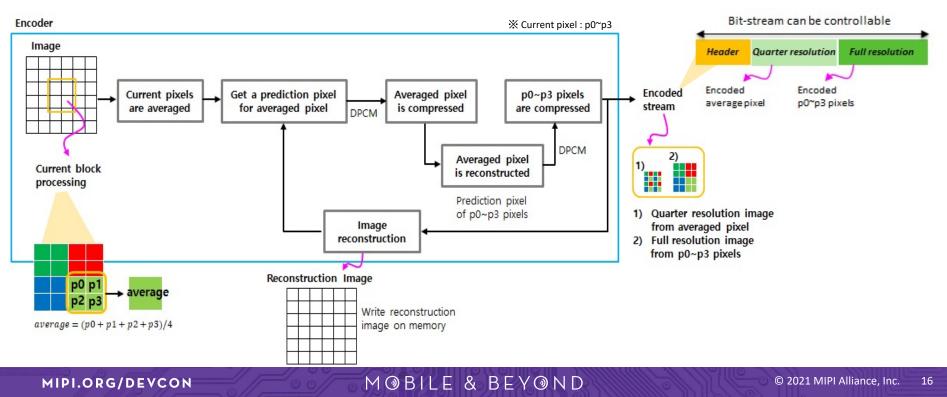
Apply multi-resolution scheme

- MPC encodes detail which is information of 2x2 multi-pixel
- MPC simultaneously supports multi-resolution in 1-frame of Tetra-cell image
- Tetra-cell, sensor can simultaneously output full resolution and quarter resolution image for Tetra and Bayer image, respectively.

mipi **DEV**CON Multi-Pixel Compression(MPC) for multi-pixel sensors

Distance geometry

- Geometrical layout of multi-pixel sensors allows smaller physical distance of pixel pitch
- MPC keeps the distance of $\frac{\sqrt{2}}{2}$ for the prediction pixel

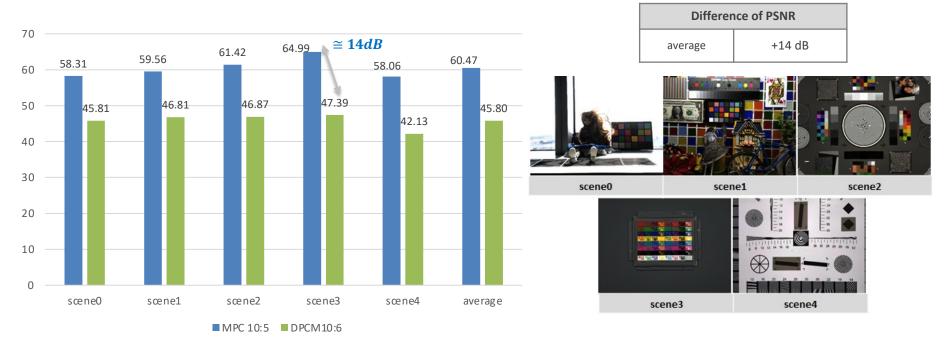


Overview of MPC algorithm

Algorithm chain

2021

- Each pixel, p0~p3 and averaged pixel are simultaneously compressed
- Encoded stream includes dual-resolution images (full and quarter resolution)



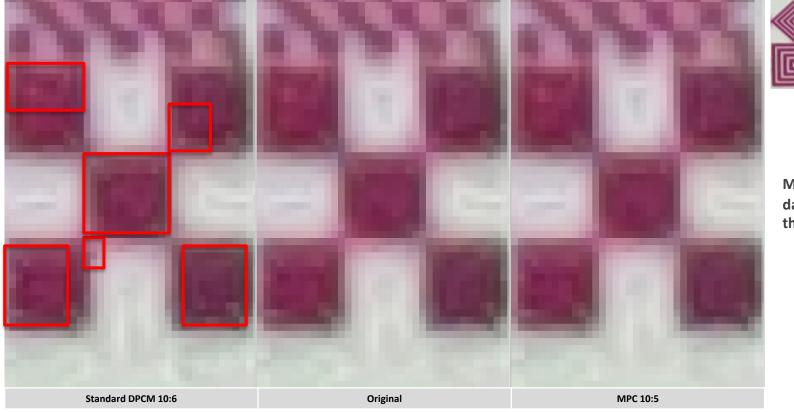
Experimental results (1/3)

Against existing standard DPCM for Tetra-Cell

2021

- PSNR of MPC 10:5 is ~14dB higher than standard DPCM
- Compression ratio of MPC is 20% higher than standard DPCM (comp. ratio 2:1 vs 1.67:1)

MIPI.ORG/DEVCON


MOBILE & BEYOND

mipi[•]**DEV**CON

Experimental results (2/3)

MPC compresses pixel data while maintaining the image quality

MIPI.ORG/DEVCON

Experimental results (3/3)

MIPI.ORG/DEVCON

ADDITIONAL RESOURCES

MIPI Camera Serial Interface 2 (MIPI CSI-2)
https://www.mipi.org/specifications/csi-2

mipi[®]**DEV**CON

mipi[®] DEVCON

MIPI.ORG/DEVCON

MIPI ALLIANCE DEVELOPERS CONFERENCE

THANK YOU!

M@BILE & BEY@ND

28-29