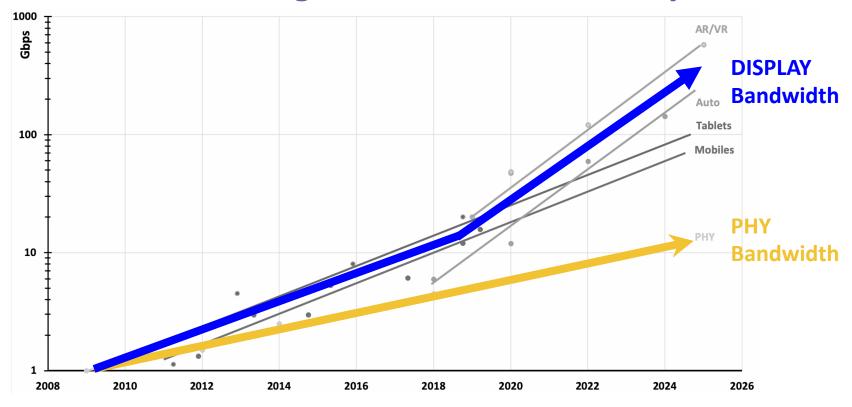


Alain Legault, VP IP Products, Hardent Joe Rodriguez, Product Marketing Manager, Rambus Justin Endo, Marketing & Sales Manager, Mixel

Meeting the Needs of Next-Generation Displays with a High-Performance MIPI DSI-2SM Subsystem Solution

28-29 SEPTEMBER 2021



Bandwidth Challenge for Video Connectivity

Bandwidth Challenge for Video Connectivity

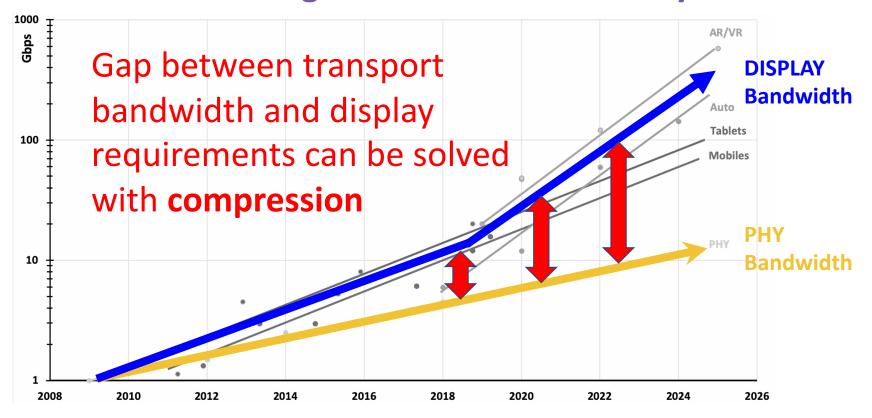
Some Applications Require Even More Bandwidth

Mobile Displays

- Need to support gaming
- Need to be "AR/VR ready"
- Foldable displays
- Require higher display resolutions and frame rates.

AR/VR Displays

- Need to drive two displays
- Require higher pixel density (ppi), higher pixel resolutions (bpc) and frame rates



Automotive Displays

- More displays
- Require higher resolutions
- Multiple input sensors

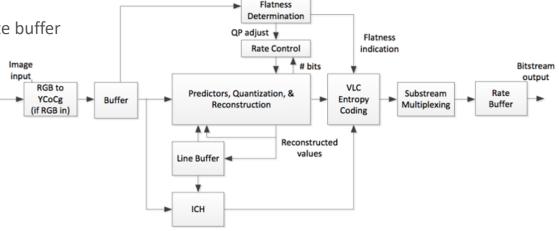


Bandwidth Challenge for Video Connectivity

Host IP Subsystem Integration

Dual link configuration shown; single link also supported. Dotted line shows second link.

Hardent VESA DSC Compression IP


About Hardent

- First IP provider to bring VESA DSC IP cores to market in 2014
- VESA DSC IP cores are silicon proven
 - Over 100 design wins across a wide range of industries
- Active contributor to industry standards organizations
 - VESA member since 2013
 - MIPI Alliance member since 2015.

VESA DSC Algorithm Overview

- Visually lossless video compression standard
- Compression as low as 8bpp without any perceptible differences
- Extremely low latency
- Video quality excellent with all types of content
 - Natural and test images, text, and graphics
- Requires a single line of pixel storage + rate buffer
- Intra-frame Variable Bit Rate Encoder
- Constant Bit Rate (CBR) transmission
- Based on Delta Pulse Code Modulation (DPCM)
- Mid Point (MPP), Block Predictor (BP)
- Modified Median Adaptive Predictor (MMAP)
- Indexed Color History (ICH)

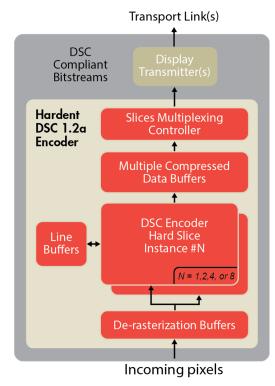
Source diagram: VESA DSC white paper

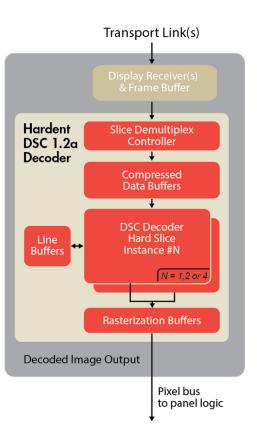
Applications Using VESA DSC

- Mobiles
- Tablets
- Test Equipment
- GPUs
- AR/VR head-mounted displays
- In-car video systems
- Video transport
- 8K TVs
- DTV STBs
- High-res. monitors

Hardent DSC 1.2a IP: Key Features

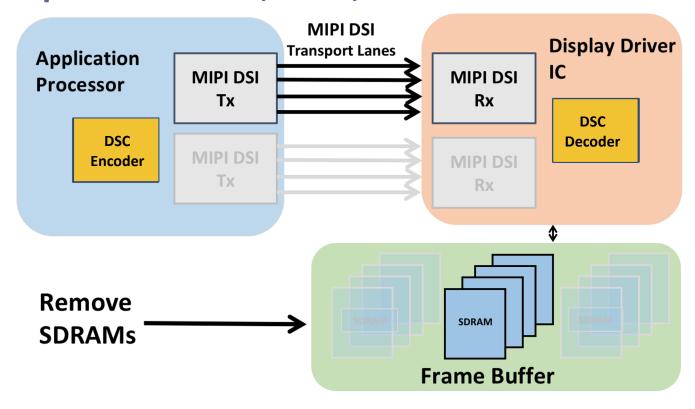
- Backward compatible with DSC v1.1
- Supports all DSC mandatory and optional encoding mechanisms
 - Modified Median Adaptive Predictor (MMAP), Block Predictor (BP), Mid Point (MPP) and Indexed Color History (ICH)
- Transport stream agnostic
- Scalable number of parallel hard slice instances (1, 2, 4, and 8)
- RGB 4:4:4, YCbCr 4:2:0, and YCbCr 4:2:2 native coding
- 8, 10, 12, 14 and 16-bit video components
- 3 pixels / clock internal processing decoder architecture
- 1 pixel / clock internal processing encoder architecture
- Optional DSC features can be disabled to improve area (decoder only)
- Verified against VESA DSC C-model using comprehensive test image library


Hardent DSC 1.2a IP: Key Features

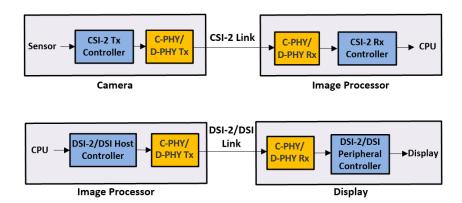

Hardent DSC v1.2a Decoder IP

- Multiple parallel decoder instances
- Single or multiple inputs
- Rasterized output
- Error resilience
- Low power & high performance

Hardent DSC v1.2a Encoder IP

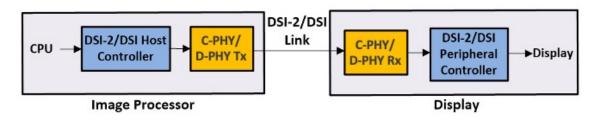

- Multiple parallel encoder instances
- Single input with de-rasterization or multiple inputs
- Single multiplexed output or multiple outputs
- Synchronous or asynchronous dataflow
- MIPI DSI command mode supported
- Low power & high performance

DSC Helps Save Power, Area, and Cost


Rambus MIPI DSI-2SM Controller

Rambus is a Leading Provider Of MIPI Controller Cores

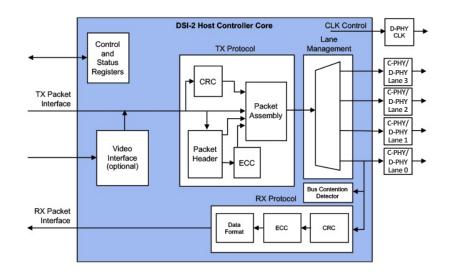
- Rambus has been supplying MIPI Controller cores since 2010
 - Optimized 2nd generation CSI-2 and DSI-2 Controllers available
 - Fast deployment of new standards
 - Full featured
 - Full support for C-PHY/D-PHY
 - Full support for DSC
- MIPI Controller Cores widely used in ASIC and FPGA
 - 100+ ASIC design wins
 - 130+ FPGA design wins
- Delivered fully integrated and verified with ASIC PHY
 - Comprehensive PHY integration and validation process



DSI-2 Controller Core Key Features

- Fully DSI-2 Specification compliant
- PHY Support
 - 1-4 D-PHY lanes
 - 1-4 C-PHY lanes
- 32 and 64-bit core width versions
 - Support for all data types
- Flexible packet interface
- Support for extended virtual channels
 - Optional DSI-2 Video Interface

- Support for Hardent DSC
- Delivered fully integrated with target MIPI PHY
- Minimal ASIC gate count
- Provided with expert technical support
- Provided with a DSI-2 Testbench
- Customization and integration services available
- Support for FPGA prototyping
 - Off the shelf or with PHY test IC



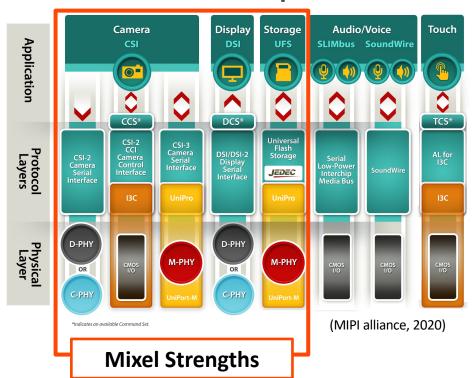
© 2021 Rambus

DSI-2 Video Interface

- DPI-2SM standard was established prior to the MIPI DSI standard
 - Hsync/Vsync style interface
 - Single pixel per clock
 - Limited data types (RGB 16/18/24 bit)
- DSI-2 Video Interface is a superset of DPI-2 Interface
 - Multiple pixel per clock support
 - All DSI-2 data types (RGB, YUV, etc.)
 - Minimized FIFO size relative to DPI-2 Interface
 - Enhanced sync retiming support
- **Enables Hardent DSC integration**

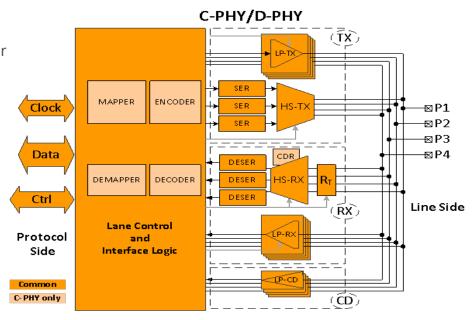
Mixel MIPI C-PHYSM/D-PHYSM

About Mixel

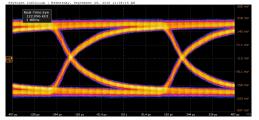

- Leading provider of mixed-signal IP since 1998 with emphasis on PHY including:
 - MIPI PHY: D-PHY, C-PHY, M-PHY®
 - LVDS SerDes
 - Multi-standard SerDes: C-PHY/D-PHY, LVDS/D-PHY
- Industry leader in MIPI® interfaces and contributing member of the MIPI Alliance since 2006
- Complete integrated solution includes PHY, controller, and platform
- First IP provider to demonstrate silicon-proven D-PHY, C-PHY, and M-PHY
- Widest coverage of process nodes and foundries: silicon-proven in
 11 different nodes and 8 different foundries

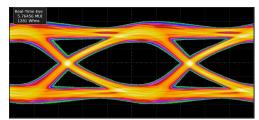
MIPI PHY Applications

- Requiring high bandwidth, low power and minimal area:
 - Mobile
 - Automotive
 - IoT/Sensor
 - VR/AR/MR
 - Other consumer electronics


MIPI Multimedia Specifications

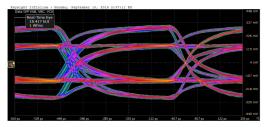
Mixel MIPI C-PHY/D-PHY Combo

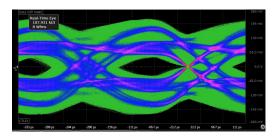

- Combo PHY can be configured as either a C-PHY or D-PHY
- Configurable for transmit (TX) and receive (RX), plus additional optimized configurations for TX and RX provide smaller area and higher performance
- Supports Camera Serial Interface (MIPI CSI-2) and Display Serial Interface (DSI, DSI-2)
- MIPI D-PHY mode supports MIPI D-PHY v2.5 Specification
- Up to 4.5 Gbps data rate per lane with De-skew calibration
- Up to 4 lanes, 18 Gbps aggregate bandwidth
- MIPI C-PHY mode supports MIPI C-PHY v2.0
- 80 Msps to 4.5 Gsps symbol rate per lane in high-speed mode
- Up to 3 trios, 13.5 Gsps/30.78 Gbps aggregate bandwidth



Multiple Generations of Mixel MIPI IP

Mixel MIPI D-PHY


D-PHY @ 2.5 Gbps


D-PHY @ 4.5 Gbps

Mixel MIPI C-PHY

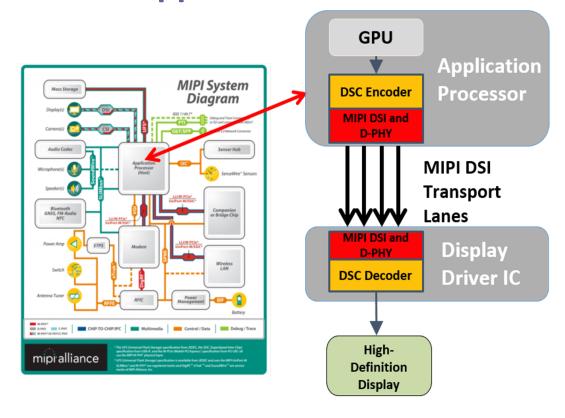
C-PHY @ 2.5 Gsps

C-PHY @ 4.5 Gsps

Use Cases: Mobile, AR/VR & Automotive

Mobile Market Trends

- Mobile devices need to be XR-ready
- Movement from LCD to OLED displays with sub-pixel rendering
 - Ultra-high resolutions and pixel density (up to 1500 ppi)
 - High dynamic range (HDR)
 - Higher frame rate
 - Optical compensation
 - Foldable, rollable displays
 - Lower power consumption
 - Non-uniformity compensation
- DDIC frame buffer going from 10 to 100 Mbits


	2010	2020		
Display Resolution	1280 x 720 HD	3840 x 2160 4K		
Frame Rate	60 fps	120 fps		
Pixel Depth	24 bits	30 bits		
Interface	0.5 Gbps / lane	2.0 Gbps / lane With DSC		
Display Bandwidth	1.3 Gbps	29.9 Gbps		

23x

Use Case: Mobile and Tablet Applications

- Benefits
 - Reduce bandwidth
 - Save power
 - Lower EMI
 - Lower cost
 - Smaller footprint
 - Less pins
 - Lower switching frequencies

D-PHY Speed/Display Resolution

D-PHY v1.1 1.5 Gbps / lane

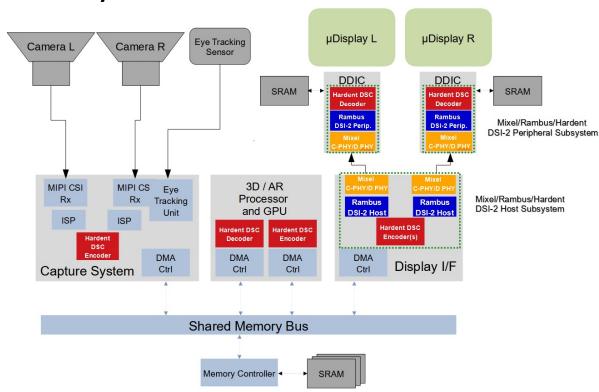
Resolution	FHD (1080×1920)	WQHD (1440x2560)	WQXGA (1600x2560)	UHD (2160x3840)	WQUXGA (2400x3840)	5K (2880x5120)	8K (4320x8192)
Bandwidth	3.58Gbps	6.37Gbps	7.08Gbps	14.33Gbps	15.93Gbps	25.49Gbps	61.16Gbps
No compression	3 lanes	6 or 8 lanes	6 or 8 lanes	N/A	N/A	N/A	N/A
2x compression	2 lanes	3 lanes	3 lanes	8 or 6 lanes	8 or 6 lanes	N/A	N/A
3x compression	1 lane	2 lanes	2 lanes	4 lanes	4 lanes	8 lanes	N/A

D-PHY v1.2 2.5 Gbps / lane

Resolution	FHD (1080×1920)	WQHD (1440x2560)	WQXGA (1600x2560)	UHD (2160x3840)	WQUXGA (2400x3840)	5K (2880x5120)	8K (4320x8192)
Bandwidth	3.58Gbps	6.37Gbps	7.08Gbps	14.33Gbps	15.93Gbps	25.49Gbps	61.16Gbps
No compression	2 lanes	3 lanes	3 lanes	8 or 6 lanes	8 lanes	N/A	N/A
2x compression	1 lane	2 lanes	2 lanes	3 lanes	4 lanes	8 or 6 lanes	N/A
3x compression	1 lane	1 lane	1 lane	2 lanes	3 lanes	4 lanes	N/A

AR/VR Market

- Challenges
 - Requires 2 displays at higher resolution, higher PPI, higher refresh rates
 - Tethered HMD
 - Cables are running out of bandwidth



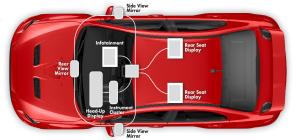
- Wireless HMD
 - Bandwidth, power management, and miniaturization are huge obstacles

Use Case: AR Head-Mounted Display (HMD)

HMD AR System With Frame Buffer

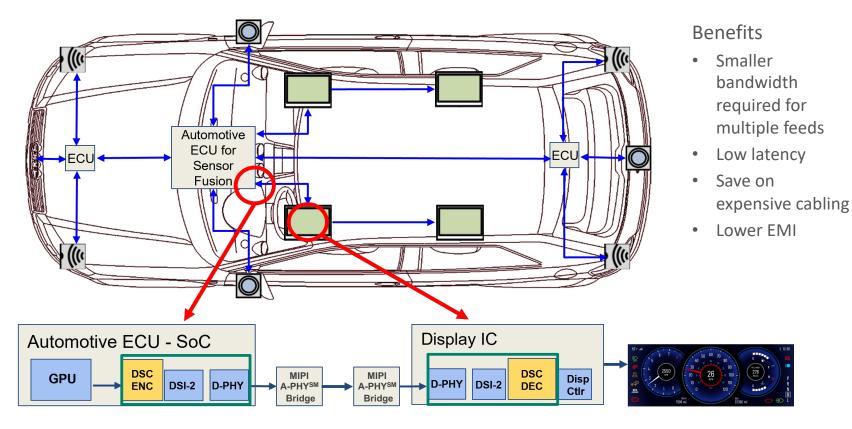
Applications

- Images captured by 3D camera
- Video and graphics processed by AR processor and GPU
- L/R video streams sent to micro-displays (DSI-2 Link)
- Video stored inside microdisplay driver IC (Frame Buffer)


Benefits

- Lower bandwidth
- Smaller RAM buffer
- Power and \$ savings
- Low latency

Automotive Market


- The number of displays and cameras in cars is increasing rapidly
 - ADAS, ACAS, infotainment, control panels, rear seat displays, head-up displays, side and rearview mirrors, ...
 - 1-3 displays \rightarrow 10-12 displays
 - 1 camera \rightarrow 5-10 cameras
 - 2-5 sensors \rightarrow 10-20 sensors

Display Type	Spatial Resolution		DPI (pix / inch)	Bandwidth Req. @ 60 Hz refresh
Mid-range car	HD	1280 x 720	100	1.8 Gbps
High-end car	FHD	1920 x 1080	200	3.6 Gbps
Next-gen. car	UHD	3860 x 2160	400	14.4 Gbps

Automotive Video Applications



Integrated IP Subsystem Solution

Host IP Subsystem Integration

Dual link configuration shown; single link also supported. Dotted line shows second link.

DSI-2 DSC IP Subsystem Deliverables

DSI-2 Controller Core Deliverables

- DSI-2 Controller Core Source Code
 - Fully configured for application
 - Fully integrated and verified with D/C-PHY
 - User Guide, integration guide, timing constraints
 - Optional FPGA prototyping
- Testbench Source Code
 - DSI-2 Peripheral or Host Testbench with DSI-2 Host or DSI-2 Peripheral BFM and C-PHY/D-PHY Behavioral Model
- Expert Technical Support
 - One year of expert technical support
 - Optional services available (IP customization, logic development, etc.)

DSC 1.2a IP Core Deliverables

- Encrypted synthesizable RTL code
- 100% verification coverage using a comprehensive UVM verification environment
- Functional and structural verification coverage reports
- IP testbench for post-synthesis verification
- Comprehensive integration guide
- Technical support

C-PHY / D-PHY IP Core Deliverables

- Data Sheet/Specifications
- Integration guidelines
- GDS II data base
- LEF file
- LVS netlist
- Timing model
- Verilog model
- IBIS model
- RTL
- Test Benches
- First-class customer support through production

IP Integration Benefits and Conclusion

- Lower project risk with a fully integrated and verified IP solution
- Maximized functionality and availability of all MIPI DSI-2 operating modes
- Optimized for ASIC design performance (PPA)
- Accelerate ASIC and SoC time to market
- Immediate availability

Demo

View a demo of the IP subsystem later today

08:05 to 08:15 PDT

28-29 SEPTEMBER 2021

DEMO PARTICIPANT

MIPI.ORG/DEVCON
M®BILE & BEY®ND

More Information

www.mixel.com info@mixel.com www.rambus.com rcg@rambus.com

www.hardent.com info@hardent.com

THANK YOU!

