An Introduction to MIPI I3C® v1.1 and What’s Next
What is MIPI I3C?

• Innovative new 2-Wire interface for sensing and beyond

• Key features address historical pain points
 – In-band Interrupt, Dynamic Addressing, Multi-Master, Standardized Commands, Time Control, Hot-Join, Error Detection and Recovery
 – Plus...

I3C Compatibility

Low Power

High Data Rates
MIPI I3C for Ubiquitous Low Speed Interfacing

- Anywhere sensors are used, MIPI I3C belongs
- Aimed toward historical I²C, SPI and UART applications in...
MIPI I3C Vision

Too Many I/Os! Fragmented Interfaces!

I2C Compatibility
In-band Interrupt
Common Command Codes
Reduced Signal Count
Reduced Interface Power
Current Status

• MIPI I3C v1.0 and MIPI I3C Basic v1.0 Specifications are released
• Interoperability confirmed via multiple MIPI sponsored plugfests
• Master and Slave IP available from all major providers
• Test/Analysis equipment available
• Standardized Host Controller Interface (MIPI I3C HCI™ v1.0)
• Linux Kernel support for I3C subsystem
• 5G Ready
• MIPI I3C v1.1 is Sensor WG approved and in formal review process!
Why Adopt MIPI I3C v1.1?

• More clearly written document
• Higher speeds through new HDR mode and multi-lane (Effective Bit Rates in Mbps)

• Configurable, pattern-based Slave Reset

• Grouped Addressing, Device to Device(s) Tunneling, Comprehensive Multi-Mastership...
I3C Basic vs I3C v1.0 vs I3C v1.1 (1/2)

<table>
<thead>
<tr>
<th>Feature</th>
<th>I3C Basic</th>
<th>I3C v1.0</th>
<th>I3C v1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5 MHz SDR (Master w/Stall, Slave and Legacy I²C Slave Compatibility)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0V Operation for 100pf C_{load}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slave Reset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Static Address as Dynamic Address CCC (SETAASA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2V-3.3V Operation for 50pf C_{load}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-band Interrupt (w/MDB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Address Assignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Detection and Recovery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Command Codes (Required / Optional)</td>
<td>Yes / No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary Master</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot-Join Mechanism</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I3C Basic vs I3C v1.0 vs I3C v1.1 (2/2)

<table>
<thead>
<tr>
<th>Feature</th>
<th>I3C Basic</th>
<th>I3C v1.0</th>
<th>I3C v1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Timing Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asynchronous Timing Control (Modes 0-3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDR-DDR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDR-TSL/TSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDR-BT (Multi-lane Bulk Transport)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grouped Addressing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device to Device(s) Tunneling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-lane for Speed (Dual/Quad for SDR and HDR-DDR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring Device Early Termination</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Looking Ahead at Capabilities...

• Beyond the Mobile Industry
 – Internet of Things (IoT)
 – High Performance Compute / Servers
 – Automotive

• For Usages Beyond Sensing
 – As part of its Charter, the Sensor WG carries the responsibility to ensure MIPI I3C “maintains a relevant feature set and scope”
 – The following notable usages, among others, have been instrumental in evolving I3C forward:
 • MIPI Camera Control Interface (CCIM)
 • MIPI Touch over I3C
 • MIPI Debug for I3C
 • System Manageability
What is Next for MIPI I3C?

• Sensor WG ramping up discussion on the next evolution of MIPI I3C
• Considering multiple capabilities / improvements
 – Long reach
 – Specification development improvements
 – Automotive requirements
 – Speed increases
 – New multi-lane uses
 – New PHY approaches
 – Standardized connectors
 – Feature refinements
• Reaching out to Industry partners and forming liaisons
• Join us now to ensure that MIPI I3C evolves to meet the needs of new industries and usages!
• MIPI Sensor WG
 – https://www.mipi.org/groups/sensor
• MIPI I3C Spec
 – https://www.mipi.org/specifications/i3c-sensor-specification
• Whitepaper: Introduction to the MIPI I3C Standardized Sensor Interface
 – http://resources.mipi.org/i3c-sensorSpecification-whitepaper-from-mipi-alliance
• MIPI I3C Frequently Asked Questions
 – https://www.mipi.org/resources/I3C-frequently-asked-questions
Any Questions?
THANK YOU

MIPI ALLIANCE DEVELOPERS CONFERENCE
TAIPEI
18 OCTOBER 2019