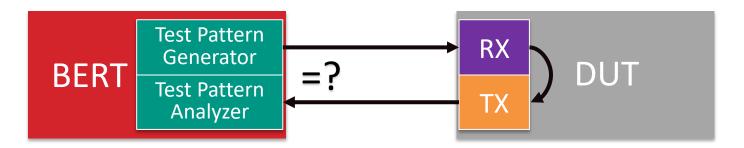


Victor Sanchez-Rico
BitifEye Digital Test Solutions GmbH

PHY Testing Challenges and Opportunities: The Need For a Smart Testing Approach MIPI ALLIANCE DEVELOPERS CONFERENCE

TAIPEI
18 OCTOBER 2019


PHY Testing – Ideal Scenario

	Comparable Results	Low Cost Testing	Fast Testing Speeds
InterOp	<u>(i)</u>	<u> </u>	(2)
Choice of Test Systems	<u>(i)</u>		
Test Houses	<u>(i)</u>		

MIPI ALLIANCE DEVELOPERS CONFERENCE TAIPEI 18 OCTOBER 2019

Common RX Test Approaches: Loopback

- Pattern Generator in BERT sends continuous test pattern to DUT
- DUT processes the test data and sends it back to the BERT Analyzer
- Pattern compared, Bit Error Rate calculated

Common RX Test Approaches: Loopback

- Challenges:
 - DUT comes out of test mode whenever the test pattern generator is restarted
 - Manual intervention of test operator is required (time consuming) or
 - Automation scripts and side-band connection are required (customization)
 - Can't test real world data (Burst)
 - Some tests can't be done easily, e.g. Squelch detection in MIPI M-PHY®


Common RX Test Approaches: Loopback

	Comparable Results	Low Testing Costs	Fast Testing Speeds
InterOp			
Choice of Test Systems	<u>(i)</u>	<u>(:)</u>	<u>(:)</u>
Test Houses	<u>(i)</u>	<u>(:)</u>	

Common RX Test Approaches: Side-band

- Proprietary access to built in Error Counters
- Pattern Generator in Test Equipment sends test pattern to DUT
- DUT processes the test data and counts errors
- Additional connection to the DUT to grab counters through customer-specific equipment

Common RX Test Approaches: Side-band

	Comparable Results	Low Testing Costs	Fast Testing Speeds
InterOp	<u>(=)</u>		<u>=</u>
Choice of Test Systems	<u>(i)</u>		<u>(:)</u>
Test Houses	<u>(i)</u>		

Common RX Test Approaches: Visual Test

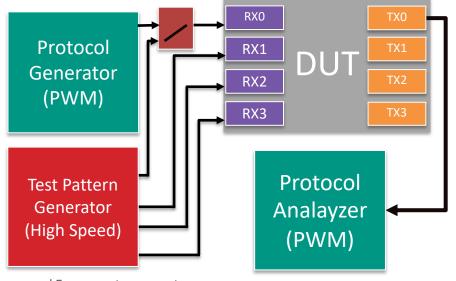
	Comparable Results	Low Testing Costs	Fast Testing Speeds
InterOp			<u>:</u>
Choice of Test Systems	<u>(=)</u>		
Test Houses			

Solution: PHY Test Mode

- Functionality that allows to configure the DUT for test exclusively with in-band control commands
- Simplified link startup for simplicity
- Bit and error counters also retrieved with Test Equipment via in-band commands
- Preferably implemented in the PHY Layer
- Optional: master device can configure test mode for slave(s), and run some tests w/o need for test equipment.

Solution: PHY Test Mode

	Comparable Results	Low Cost Testing	Fast Testing Speeds
InterOp	<u>(i)</u>	<u> </u>	
Choice of Test Systems	<u>(i)</u>	<u> </u>	
Test Houses	<u>(i)</u>		

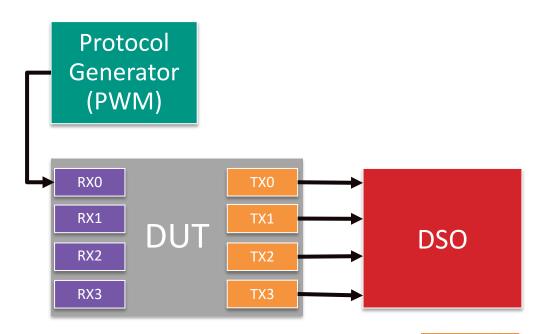

PHY Test Mode Example: MIPI M-PHY® MIPI UniPro® RX Test

Use Case

- DUT Data0 RX is connected to switch that can alternate between test pattern generator and protocol generator
- DUT Data1-3 RX connected directly to test pattern generator
- DUT Data 0 TX connected to protocol analyzer
- DUT RST_n also controlled to alternate test modes

Test Flow

- Automation connects protocol generator to DUT
- Hardware Reset sent to RST_n of DUT
- Protocol generator sends link configuration pattern to DUT
- Automation connects test pattern generator to DUT
- Test pattern generator sends test pattern to DUT, interleaving Frame and Error counter requests
- DUT responds, protocol analyzer captures response and test automation decodes it
- Test goes on until DUT reports errors or target BER is achieved

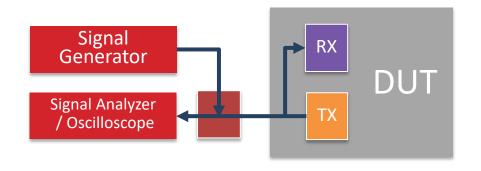

PHY Test Mode Example: MIPI M-PHY®" MIPI UniPro® TX Test

Use Case

- DUT Data0 RX is connected protocol generator
- DUT TX Lane under test is connected to oscilloscope
- DUT RST_n also controlled to alternate test modes

Test Flow

- Protocol generator sends Hardware Reset to DUT
- Protocol generator sends link configuration pattern to DUT
- Automation controls oscilloscope TX Test software to run selected tests



Outlook and suggestion: A-PHY

- Unlike MIPI M-PHY®, both bus directions are transmitted simultaneously on the same wire
 - Only one direction for High
 Speed data, but control data is full duplex, on the same wire
 - No fixture is available that can be used to combine and split the data

Outlook and suggestion: A-PHY

 A-PHY uses a very long channel. Embedding it (software simulation) seems like the sensible choice but it can have a very big impact on test pattern generation time

> MIPI ALLIANCE DEVELOPERS CONFERENCE TAIPEI 18 OCTOBER 2019

About BitifEye

- Located in Boeblingen, Germany
- Solutions Partner of Keysight Technologies, system integrator
 - integration of high-performance test instruments: bit-error ratio testers, oscilloscopes, network analyzers...
 - complementary products software, accessories, instruments and services
- Experts in wireline digital high-speed interconnect test, e.g. HDMI, USB, MIPI
 - focus on physical layer (PHY) tests compliance tests and product characterization
 - inventor of PHY test automation for gigabit receivers/sinks, market leader since 2005
 - provider of complementary hardware, software and services

About BitifEye

THANK YOU

MIPI ALLIANCE DEVELOPERS CONFERENCE

TAIPEI
18 OCTOBER 2019