mipi[®] DEVCON

Alain Legault Hardent

Next-Generation Mobile, AR/VR, & Automotive Displays With VESA VDC-M & MIPI® DSI-2SM MIPI ALLIANCE DEVELOPERS CONFERENCE **TAIPEI** 18 OCTOBER 2019

TAIPEI

Bandwidth Challenge for Video Connectivity

© 2019 MIPI Alliance, Inc.

MIPI.ORG/DEVCON | 2019

2

MIPI ALLIANCE

CONFERENCE

TAIPEI

Gap Between Transport & Display Bandwidth

© 2019 MIPI Alliance, Inc.

Possible Solutions vs. Trade-offs

1. Add transport lanes

- More pins/cables needed
- Real estate increase
- Weight increase
- Cost increase
- Power consumption increase
- EMI noise increase

Industry Compression Timeline

Display Stream Compression (DSC) Overview

- Visually lossless video compression standard
- Up to **3X** compression (**8 bpp**) without any perceptible differences
- Extremely low latency (< 0.5 usec)
- Video quality excellent with all types of content
 - Natural and test images, text, and graphics
- Requires a single line of pixel storage + rate buffer
 - Intra-frame Variable Bit Rate Encoder
 - Constant Bit Rate (CBR) transmission
 - Based on Delta Pulse Code Modulation (DPCM)
 - Mid Point (MPP), Block Predictor (BP)
 - Modified Median Adaptive Predictor (MMAP)
 - Indexed Color History (ICH)

© 2019 MIPI Alliance, Inc.

Transport Standards Using DSC

mipialliance

MIPI DSISM 1.3.1

eDP 1.4b DisplayPort 1.4

DisplayPort 2.0 USB Type-C

HDBT 2.0 HDMI 2.1

MIPI ALLIANCE DEVELOPERS CONFERENCE **TAIPEI** 18 OCTOBER 2019

Hardent

Applications Using DSC

- Tablets
- GPUs
- AR/VR head-mounted displays
- In-car video systems
- Video transport
- UHD / 8K TVs
- DTV STBs
- High-resolution monitors
 Hardent

© 2019 MIPI Alliance, Inc.

MIPI.ORG/DEVCON | 2019

CONFERENCE TAIPEI

Some Applications Require Even More Bandwidth

Mobile Displays

- Need to support gaming
- Need to be "AR/VR ready"
- Require higher display resolutions & frame rates

AR/VR Displays

- Need to drive two displays
- Require higher pixel density (ppi) & frame rates

Automotive Displays

- Are increasing rapidly
- Require higher display resolutions

9

TAIPEI

Product Display Bandwidth Trends

© 2019 MIPI Alliance, Inc.

MIPI.ORG/DEVCON | 2019

LO

DSC vs. VDC-M

	DSC	VDC-M		
Encoding Block Structure	3x1 pixels	8x2 pixels		
Encoding Tools	 Mid Point (MPP) Block Predictor (BP) Modified Median Adaptive Predictor (MMAP) Indexed Color History (ICH) 	 Mid Point (MPP) Enhanced Block Predictor (BP) Transform (DCT and Hadamard) Enhanced Quantization 		
Visually Lossless Performance	8 bpp (bits per pixel)	5-6 bpp (bits per pixel)		
IC Complexity	Low Mediu			
RAM Usage	Single line	2.5 lines		
Latency (end-to-end)	<0.5us	<1.2us		
(UHD 3840x2160 example)	<2H line	<5H line		

Pixels / Clock Architecture			
Encoder	1	2	MIPI ALLIANCE DEVELOPERS
Decoder	3	4	CONFERENCE TAIPEI
			18 OCTOBER 2019

© 2019 MIPI Alliance, Inc.

VDC-M Enhanced Block Prediction Mode

- Block prediction is performed on 2x1 or 2x2 partitions
 - One block prediction vector (BPV) for all color components of each partition
- Block prediction uses a large and regular search area
 - 64 potential BPVs for each partition

Three example BPVs for a 2x1 partition

© 2019 MIPI Alliance, Inc.

TAIPEI

VDC-M New Transform Mode

- Transforms residuals of best of 8 intra-predictors
 - DC, Vertical, Vertical Left, Vertical Right, Diagonal Left, Diagonal Right, Horizontal Left, Horizontal Right
- Transform is done for each color component on 8x2 block (or 4x2 block for YUV 4:2:x chroma)
 - Uses Butterfly DCT in horizontal direction and Hadamard transform in vertical direction
 - Separates higher frequencies (which the eye is less sensitive to) from lower frequencies
 - Similar transform to what is done in MPEG and JPEG encoding

Source: VESA VDC-M Slides

MIPI ALLIANCE DEVELOPERS CONFERENCE **TAIPEI** 18 OCTOBER 2019

13

Transport Standards Using VDC-M

- VDC-M was officially released in May 2018
- MIPI Alliance adopted VDC-M 1.2 as part as their new DSI-2 v1.1 specification
- VDC-M is now being considered by other transport specifications

Mobile Market Trends

- Mobile devices need to be VR-ready
- Movement from LCD to OLED displays
 - Ultra-high resolutions and pixel density (up to 1500 ppi)
 - High dynamic range
 - Higher frame rate
 - Optical compensation
 - Foldable, rollable displays
 - Lower power consumption
 - Non-uniformity compensation
- DDIC frame buffer going from 10 to 100 Mbits

LED displays					
pixel density		2010	2020		
	Display Resolution	1280 x 720 HD	3840 x 2160 4K		
	Frame Rate	60 fps	120 fps		
	Pixel Depth	24 bits	30 bits		
	Interface	0.5 Gbps / lane	2.0 Gbps / lane		
n ation	Display Bandwidth	1.3 Gbps	29.9 Gbps		
rom 10 to 100 Mbits 23x					
Harde			MIPI ALLIANCE DEVELOPERS CONFERENCE TAIPEI		
MIPI.ORG/DEV	18 OCTOBER 2019				

Use Case: Mobile and Tablet Applications

- Application processor
- DDIC (Display Driver IC) and touch panel controller
- Benefits
 - Reduce bandwidth
 - Save power
 - Save on cost
 - Lower EMI

VDC-M Mobile/Tablet Use Case

- Additional DSI lane saving
- Power consumption saving
- Smaller SDRAM frame buffer

Examples

- WQUXGA Display (2400x3840) 24bpp 60fps
 - D-PHYSM 2.5Gbps: only 2 lanes required
 - SDRAM 4 times smaller
- UHD Display (2160x3840) 30bpp 120fps
 - D-PHY 2.5Gbps: only 3 lanes required

Hardent

SDRAM 5 times smaller

AR/VR Market

Console market

TAIPEI

- Oculus, HTC Vive, Sony Playstation, Windows MR,...
- Cables are running out of bandwidth
 - Requires 2 displays at higher resolution, higher ppi, higher refresh rates

- Standalone market
 - Microsoft Hololens, Google Daydream, Oculus Go, HTC Vive Focus,...
 - Bandwidth, power management, and miniaturization are huge obstacles
 - Optimized silicon is emerging
 - Qualcomm Snapdragon XR, ARM Mali-D77, NVidia Tegra

18

MIPI.ORG/DEVCON 2019

mipi **DEV**CON

19

Use Case: AR/VR Head-Mounted Display

Applications

- Video capture
- Application processor and GPU
- Micro-display driver IC

Benefits

- Lower bandwidth
- Smaller RAM buffer

MIPI.ORG/DEVCON 2019

Capture System

MIPI CSI SM

CAMERA L

VDC-M to Fulfill Future AR/VR Requirements

VESA members AR/VR Task Group Survey Summary

- 1. Resolutions per eye will increase over time from 2K x 2K in 2019 to **8K x 8K in 2025**
- 2. It is believed that very few people see a difference beyond 8K x 8K per eye
 a. This is about 60 pixels per degree for 273 degrees horizontally
 b. It allows 220 degrees plus 25 degrees of overlap between the eyes
- 3. Refresh rates required is between **120 to 240Hz** to meet human perception limits
- 5. Refresh fates required is between 120 to 240Hz to meet numan perception
- 4. Pixel resolution of 12bpc will be required by 2025

AR/VR Use Cases & VDC-M

• All resolutions/frame rates below are "per eye"

Digital Car Market

- Number of displays in cars is increasing rapidly
 - ADAS, infotainment, control panels, rear seat displays, head-up displays, side and rear view mirrors, ...
 - 1-3 displays \rightarrow 10-12 displays
 - 1 camera \rightarrow 5-10 cameras
 - 2-5 sensors \rightarrow 10-20 sensors

Display Type	Spatial Resolution		DPI (pix / inch)	Bandwidth Req. @ 60 Hz refresh	
Mid-range car	HD	1280 x 720	100	1.8 Gbps	
High-end car	FHD	1920 x 1080	200	3.6 Gbps	
Next-gen. car	UHD	3860 x 2160	400	14.4 Gbps	
Hardent					

© 2019 MIPI Alliance, Inc.

Automotive Transport Link Technologies Today

- Several technologies available: Maxim GMSL, Inova APIX, Valens HDBaseT, TI FPD-Link
- Link speed ranges between 1.0 6.0 Gbps typically over a 15 meter coaxial or shielded twisted pair cable
- Automotive environment is demanding: higher bitrate (> 6 Gbps) adds significant challenges
 - Electromagnetic noise immunity, reliability, cost, etc.
 - Adoption/certification of high-speed serial link technology is a long & expensive process
 - Using multiple links per screen is expensive

More Cables Is NOT The Solution

- Wiring harness is the 3rd highest cost component in a car (behind engine and chassis) comprising 50% of the cost of labor for the entire car
- 3rd heaviest component (after the chassis and engine)*
- EMI and signal integrity is a major challenge

* Source: Delphi, Inc.

24

Hardent

TAIPEI

TAIPEI

In-Car Video Applications

- Benefits
 - Smaller bandwidth for multiple feeds
 - Low latency
 - Save on expensive cabling
 - Lower EMI

TAIPEI

Compressed Multi-Stream Transport

VDC-M Automotive Use Case

- Number of displays in cars is increasing rapidly
- Display physical size may not increase due to car physical limitation, but resolution is increasing
 - High-end displays now support FHD (150-200 ppi)
 - Next-generation aiming at UHD (300-400 ppi)
- VDC-M extends life cycle of existing link technology
 - Limitations to increase transmission link speed between head unit and multiple displays
 - Automotive environment is demanding, higher bitrate (> 6Gbps) adds significant challenges
 - Electromagnetic noise immunity, reliability, cost, etc.
 - Adoption/certification of high-speed serial link technology is a long and expensive process
 - Using multiple links per screen is expensive
 - Potential use of self-healing ring cuts available link bandwidth

Use Cases: Display / Link Compression Requirements

- Projected automotive link speed in the future = 12 Gbps
- Future display requirements:
 - 12 UHD displays
 - Bandwidth per display = 600 MPixels/sec = 14.4 Gbps for 24-bit pixels

Compression	Target bpp	Comp. Factor	Bandwidth Req.	# of UHD Displays / Links	# of Links Required For 12 Displays
Uncompressed	24	1X	14.4 Gbps*	1 or 2	12 or 24
VESA DSC	8	3X	4.8 Gbps	2	6
	6	4X	3.6 Gbps	3	4
VESA VDC-M	5	4.8X	3.0 Gbps	4	3
* Slightly exceeds available bandwidth					

MIPI ALLIANCE DEVELOPERS CONFERENCE TAIPEI 18 OCTOBER 2019

Compression For Automotive Displays

Is it safe?

Hardent

© 2019 MIPI Alliance, Inc.

MIPI.ORG/DEVCON | 2019

MIPI ALLIANCE DEVELOPERS CONFERENCE TAIPEI 18 OCTOBED 2019

Automotive Functional Safety

- Governed by ISO 26262 Functional Safety for Road Vehicles standard
- 4 safety levels: ASIL A (lowest) to ASIL D (highest)

	ASIL B	ASIL C	ASIL D	
Single Point Fault Metric	> 90%	> 97%	> 99%	
Latent Fault Metric	> 60%	> 80%	> 90%	
Probabilistic Metric for Hardware Failures	< 10 ⁻⁷ /h	< 10 ⁻⁷ /h	< 10 ⁻⁸ /h	
Hardent				

MIPI ALLIANCE DEVELOPERS CONFERENCE **TAIPEI** 18 OCTOBER 2019

Example: Head Unit Display

- Display shows a video coming from a backup camera
- **Safety Goals** for the end-to-end video path (hardware level):
 - Safety goal #1: stream displayed has no corrupted pixels
 - Safety goal #2: stream displayed has no frozen frame

31

Video Encoder Safety Mechanisms

- Internal Safety Diagnostic Mechanisms
 - Fault avoidance mechanism
 - Reset performed at the beginning of every frame
 - Additional circuits added to the compression IP core (in blue)
 - Self Check
 - Control output diagnostics (Output Check)
 - RAM ECC correctable and uncorrectable errors
 - Configuration register protection (Config Check)
- External Safety Diagnostic Mechanisms
 - Offers maximum reliability
 - Implemented to protect against faults not detected by the internal safety mechanisms, e.g.:
 - Interrupt pin validation
 - Frame start/done monitoring
 - Test of internal safety mechanisms
 - Watermark video frames (detects frozen frames)

© 2019 MIPI Alliance, Inc.

MIPI.ORG/DEVCON | 2019

Hardent

33

Conclusion

- There is a clear need within the industry for the additional bandwidth savings offered by VDC-M compression
- VDC-M is already supported by MIPI DSI-2sm
 - VDC-M will be supported by other transport technologies in the future
- The VDC-M compression algorithm is complex
 - Each application has its own unique requirements
- Visit our demo in the exhibitor area to see a live VDC-M demo & find our more about using compression in your next design

ADDITIONAL RESOURCES

• VESA Website

https://vesa.org/vesa-display-compression-codecs

• MIPI Website

https://www.mipi.org/specifications/dsi-2

• Hardent Website

– <u>https://www.hardent.com/ip-products-vdc-m/</u>

Hardent

MIPI.ORG/DEVCON | 2019

DEVELOPERS CONFERENCI TAIPEI 18 OCTOBER 2019

34

mipi[®] DEVCON

THANK YOU

MIPI ALLIANCE DEVELOPERS CONFERENCE **TAIPEI** 18 OCTOBER 2019