Mohamed Hafed
Introspect Technology

New Trends in the High-Volume Manufacturing Test of MIPI-Based Devices
Agenda

• Introduction
• Hardware Requirements for MIPI Testing in Production
• Protocol Requirements for MIPI Testing in Production
• System-Oriented Testing & Case Studies
Typical Device Classes

(a) MIPI CSI-2SM 4-Lane → MIPI DSI-2SM 4-Lane
(b) MIPI CSI-2SM 4-Lane → MIPI DSI-2SM 4-Lane
(c) MIPI CSI-2SM 4-Lane → MIPI DSI-2SM 4-Lane
(d) MIPI CSI-2SM 4-Lane → MIPI DSI-2SM 4-Lane
Test Methodology Spectrum

ATE or Bench Instrument Add-On (e.g. Scope) → Reduce Cost / Increase Quality → Test Module → Achieve Instrument Grade → Golden Device Methodology

Test Methodology Spectrum
Test Methodology Spectrum – On-Board Channel Card
Hardware Requirements
Low-Power (LP) and High-Speed (HS) Signaling

“High” LVCMOS* level Used for low power mode

Up to 6x smaller amplitude
Up to 225x faster bandwidth

*LVCMOS = Low-Voltage Complementary Metal Oxide Semiconductor Logic
Switching Challenges on ATE

Integrated Driver

- With Hi-Z load

Conventional Switch-Based Solution

- With Hi-Z load

Switch timing & charge injection cause poor timing control

Proper D-PHY LP/HS transition

Challenges exist because of receiver switchable termination as well

Proper C-PHY LP/HS transition
Multi-Level HS Drivers and Comparators

HS Data

LP Data

Low-speed high voltage signaling

High-speed multi-level signaling
Equalization Waveforms

D-PHY

C-PHY
Bidirectional Bus Control

Acquisition is stopped.
00.0 Gs/s 1.60 Mpts

On
500 mV/

Ax

Tester Driving

Device Under Test (DUT) Driving

Tester Driving

By

© 2019 MIPI Alliance, Inc.
Protocol Requirements
DUT Configuration Through the MIPI Bus

Real Display Driver IC Programming Sequence
Functional Testing on ATE

Protocol-Based Test Solution

Start-up commands are programmed through the integrated driver without requiring ATE vectors

Conventional Switch-Based Solution

Cumbersome nature of ATE vectors often forces test engineers to choose very limited test coverage
System-Oriented Testing and Case Studies
Microcontroller CSI-2 Input Test

1. ATE commands module to begin test
2. Test module begins MIPI D-PHY transmission
3. ECC/CRC result sent to Test Module or ATE for comparison and pass/fail

Single Timing Cycle Required From ATE
Microcontroller CSI-2 Input Test

ATE to Test Module

Set Voltage

Start Transmission

Test Module MIPI Output

MIPI Test Pattern

Slow control words

High-speed test data
DDIC* with Integrated Device Response Checking

Image data

Bus Turnaround (BTA) request

Device Under Test (DUT) response

*DDIC = Display Driver IC
Image Sensor Test

Module used as a fast capture tool

Low-Speed ATE with Image Processor

DUT

Illuminator
Summary

• Increasing requirements have emerged for at-speed testing of MIPI-based devices
• System-like solutions are being developed by manufacturers of microcontrollers, image sensors, display drivers, and storage devices
• Hardware and protocol requirements for enabling the test of such solutions have been described in this presentation
ADDITIONAL RESOURCES

- https://introspect.ca/
 - Total solutions for most high-speed interface technologies
 - Solutions for at-speed testing during mass production
 - Image sensor test and validation solutions
 - Display test and validation solutions
THANK YOU