

IF IT'S NOT MIPI, IT'S NOT MOBILE

MIPI A-PHY Automotive Industry Forum

26 January 2022

MIPI®, CSI-2®, DSI® and I3C® are registered trademarks of MIPI Alliance. A-PHYSM, C-PHYSM, CSESM, CSISM, D-PHYSM, DSESM, DSI-2SM, MASSSM and PALSM are service marks of MIPI Alliance. VESA® is a registered trademark of the Video Electronics Standards Association.

Agenda

- Welcome
- Overview of MIPI A-PHY & v1.1 enhancements
 - MIPI Automotive SerDes Solutions (MASS)
 - A-PHY system modeling
 - Profile 2 architecture
 - Summary
 - Q&A on A-PHY v1.1
- Future A-PHY requirements: An interactive session
- Q&A on next-generation A-PHY
- Closing remarks

mipi^{alliance}

SPEAKERS

Peter Lefkin Managing Director MIPI Alliance

Raj Kumar Nagpal Co-Chair, A-PHY Working Group *Synopsys*

Edo Cohen Co-Chair, A-PHY Working Group Valens

Ariel Lasry Vice Chair, A-PHY Working Group *Qualcomm*

Welcome

Peter Lefkin MIPI Alliance Managing Director

MIPI A-PHY Overview

Raj Kumar Nagpal Co-Chair, MIPI A-PHY Working Group Synopsys, Inc.

MIPI A-PHY Overview

MIPI A-PHY – Automotive Long-Reach PHY

The first industry-standard <u>long-reach</u> asymmetric SerDes physical layer specification targeted for ADAS/ADS surround sensor applications and infotainment display applications

A-PHY v1.0 offers:

- Direct coupling to native CSI-2/DSI-2/DP-eDP protocols
- High performance of up to 16 Gbps over 10-15m
- High noise immunity, ultra low PER (< 10⁻¹⁹)
- Supports bridge-based and endpoint integration
- Support for automotive coax and STP\SPP channels
- Power over cable

PER: Packet Error Rate STP: Shielded Twisted Pair SPP: Shielded Parallel Pair ADAS: Advanced Driver Assistance System ADS: Autonomous Driving System SoC: System On Chip

A-PHY Interconnect and PoC Support

- A-PHY is a single lane, point-to-point, serial communication technology
- Support for multiple cable types SDP/Coax
- Power over cable supported
- Up to 15m with 4 inline connectors

mipialliance

SDP: Shielded Differential Pair

A-PHY v1.0 Performance- and Immunity-Based Profiles

Performance Variance and Scalability

• A-PHY scales up the bandwidth without changing the cables and connectors by increasing the PAM level

Noise Immunity (EMC RF Ingress) Variance

- Different OEMs have different requirements
- MIPI-conducted EMC tests at independent labs evaluating noise levels and shielding effects degradation after mechanical stress and aging

Two Performance / Noise Immunity Profiles

- Profile 1: Optimized for low cost/power implementations for lower gears with lower noise immunity and target PER <10⁻⁹
- Profile 2: Optimized for vehicle lifespan, link robustness for all gears with high noise immunity and target PER <10⁻¹⁹

Interoperability

- Full inter-profile interoperability
- A-PHY device supporting Gear N (N could be 1–5) shall support all lower gears

MIPI A-PHY v1.0 Performance

Downlink Gear Data Rate	Modulation	Modulation Bandwidth (GHz)	Max Net App Data Rate (Gbps)
G1 2 Gbps	NRZ-8B/10B	1	1.5
G2 4 Gbps	NRZ-8B/10B	2	3
G3 8 Gbps	PAM4	2	7.2
G4 12 Gbps	PAM8	2	10.8
G5 16 Gbps	PAM16	2	14.4
<i>Uplink</i> 100Mbps	NRZ-8B/10B	0.05	55 Mbps

What Makes MIPI A-PHY So Robust and Efficient?

RTS + NBIC

- Time bounded local PHY-level retransmission
 - Only within pre-defined "Overall Delay" (~6μs@G5)
 - Local: Transparent to the upper layers
 - Local: Happens within a single A-PHY hop
- Dynamic modulation for retransmitted packets with better error resistance
- Highly resilient
 - Overcomes large thousands symbols-long error bursts
 - Multiple 10s mV, instantly attacking NBI peaks
- High reliability → PER < 10⁻¹⁹
- Low overhead → 90% net data rate

High throughput automotive links are EMI-limited — not AWGN limited

NBI: Narrow Band Interferences PCS: Physica NBIC: Narrow Band Interferences Canceller PMD: Physica pralliance

PCS: Physical Coding Sub-Layer **PMD:** Physical Media Dependent

RTS: Re-Transmission Sub-Layer **AWGN:** Additive White Gaussian Noise 9 © 2022 MIPI Alliance. Inc.

To Speed Up/Ensure JITC Convergence, JITC Re-training Is Used

Example: 4GBaud PAM4, 40mVpeak 3 Tone NBI, instant attack, without re-training

Without Re-training, Canceller cannot Overcome NBI Impact on Slicer

With Re-Training, Usage of "Known Data" Slicing Allows Canceller to Quickly Converge to Remove NBI Impact on Slicer

10 | © 2022 MIPI Alliance, Inc.

JITC: Just In Time Canceller

ralliance

A-PHY v1.1

A-PHY v1.1 enhancements:

- 200 Mbps double rate uplink (U2)
- Optional PAM4 modes for G1 & G2
- Adds STQ cable support (see next slide)

Enhanced Performance Variance and Scalability

Expands PAM4 encoding to lower gears, reducing the operating signal rate of these gears and allowing implementation of A-PHY using lower cost legacy cables and connectors.

Same High Noise Immunity (EMC RF Ingress)

Supports same high noise immunity with an ultra-low packet error rate $(< 10^{-19}) \rightarrow$ built for vehicle lifespan support

Interoperability and Compatibility

- A-PHY v1.1 backward compatible with v1.0
- A-PHY v1.0 forward compatible with v1.1

liance

A-PHY guarantees full inter-profile interoperability; devices will support all the various gears below them

MIPI A-PHY Performance

A-PHY v1.1 enhancements shown in orange

Downlink Gear Data Rate	Modulation	Modulation Bandwidth (GHz)	Max Net App Data Rate (Gbps)		
G1	NRZ-8B/10B	1	1.5		
2 Gbps	PAM4 (Optional)	0.5	1.8		
G2	NRZ-8B/10B	2	3		
4 Gbps	PAM4 (Optional)	1	3.6		
G3 8 Gbps	PAM4	2	7.2		
G4 12 Gbps	PAM8	2	10.8		
G5 16 Gbps	PAM16	2	14.4		
Uplink Gear Data Rate	Modulation	Modulation Bandwidth (MHz)	Max Net App Data Rate (Mbps)		
<i>U1</i> 100 Mbps	NRZ-8B/10B	50	55		
U2 200 Mbps	PAM4-8B/10B	50	125		
		11 0 202			

A-PHY v1.1 Adds Support for STQ Cables

- Supports Star Quad (STQ) shielded dual differential pair (i.e., 4 conductor) cables and highspeed data (HSD) connectors
- Referred to as "Q-Port" within the A-PHY Working Group
- Efficient size, cost and weight compared to two separate shielded differential pair (SDP) cables

MIPI Automotive SerDes Solutions (MASS)

MIPI Automotive SerDes Solutions (MASS) in the Car

Electronic Control Unit (ECU)

- Advanced driver assistance system (ADAS) based on sensor feeds
- Produces display feeds

Sensors

- Camera
- Lidar

Displays

- Dashboard
- Console
- Side-view mirrors
- Entertainment

alliance

(Optional) A-PHY bridges

 Translates between short-range MIPI C-PHY / D-PHY & long-range MIPI A-PHY

A-PHY is the Foundation of MASS

- Direct coupling to native MIPI protocols (i.e., CSI-2, DSI-2)
- End-to-end functional safety
- End-to-end security (WIP)
- Multiple supporting interfaces:
 - I2C
 - GPIO
 - Ethernet
 - MIPI I3C (WIP)
 - SPI (WIP)

MASS Guiding Principles

alliance

MIPI A-PHY System Modeling

(Models are available to MIPI members)

Profile 1 ADS Model

4.1.1 End-To-End Validation Model

Figure 1 shows a complete end-to-end model used to validate the operation of Profile 1 solutions.

Figure 1 System Validation Model

4.1.3.1 ADS Model

The equivalent ADS Model for Downlink validation is shown in *Figure 3*.

Figure 3 ADS Model for Downlink Validation, Gear 3 Example Setup

Profile 2 Architecture

G5: sC16, 500mVpp Downlink, Time Domain Simulation

Step1: Pure RX Signal & Fixed Noises (wide band noises + PoC), Slicer Input After Equalizer, 44-Tap FFE, 84-Tap DFE (FFE and DFE are used for NBI Canceller)

mipialliance

Summary

- Established ecosystem with multiple vendors working on A-PHY compliant chipsets
- Clear and forward-looking roadmap and planning
 - A-PHY v1.0 Released in 2020
 - A-PHY v1.1 Released in December 2021
 - A-PHY "Next" Work has started in the MIPI A-PHY Working Group
 - New PALs Expending support for command-and-control interfaces, such as SPI and Ethernet
- Supporting multiple advanced use cases with clear advantages of an industry standard
 - "Error-free" links
 - Seamless integration
 - Interoperability and forward compatibility

Next-Generation A-PHY: An Interactive Session

Edo Cohen Co-Chair, MIPI A-PHY Working Group Valens Semiconductor

A-PHY Next Generation – Main Goals

• Specification update focused on emerging architecture and use cases

- Zonal architecture and SDV (software-defined vehicle)
- Modern automotive cockpit environments
- Maintain backward compatibility to A-PHY v1.0/v1.1
 - A-PHY v1.0/v1.1 will be forward compatible with next A-PHY specification
- No changes in the upper layers
 - Easy migration with minimal impact at system level
- Maintain high EMC resilience and low packet error rate

A-PHY Next Generation – Main New Features

• Double Downlink throughput

- Up to **32Gbps** (28.8Gbps net data rate) per single lane
- Uplink throughput increase
 - Up to 1.6Gbps (1.166Gbps net data rate)
- Enhance interface support
 - Add 1Gb Ethernet support (based on the new uplink BW)
 - Other interfaces may be added based on market demand
- Expand A-PHY secure control
 - Enable support of a secure A-PHY network

Downlink Gear Table (A-PHY v1.1)

Downlink Gear	Modulation	Modulation Bandwidth [GHz]	Data Rate [Gbps]	Max Net App Data Rate [Gbps]
C1	NRZ-8B/10B	1	2	1.5
GI	PAM4	0.5	2	1.8
C 2	NRZ-8B/10B	2		3
GZ	PAM4	1	4	3.6
C 2	PAM4	2	Q	7.2
63	NRZ-8B/10B	4	o	6
G4	PAM8	2	12	10.8
G5	PAM16	2	16	14.4

Downlink Gear Table (A-PHY Next Generation)

Downlink Gear	Modulation	Modulation Bandwidth [GHz]	Data Rate [Gbps]	Max Net App Data Rate [Gbps]	
61	NRZ-8B/10B	1	2	1.5	
GI	PAM4	0.5	2	1.8	
62	NRZ-8B/10B	2	Λ	3	
GZ	PAM4	1	4	3.6	
63	PAM4	2	o	7.2	
63	NRZ-8B/10B	4	o	6	
G4	PAM8	2	12	10.8	
G5	PAM16	2	16	14.4	
G6	PAM8	4	24	21.6	
G7	PAM16	4	32	28.8	

mipialliance

Uplink Gear Table (Initial Proposal)

Uplink Gear	Modulation	Modulation Bandwidth [MHz]	Data Rate [Mbps]	Max Net App Data Rate [Mbps]	
U1	NRZ-8B/10B	50	100	53	
U2	PAM4-8B/10B	50	200	125	
U3	PAM4-8B/10B	400	1600	1166	

Zonal Architecture

liance

- Zonal architecture is adopted by many OEMs, many times in conjunction with SDV.
 - Aggregation of sensors and actuators in spatial proximity by zone ECUs
 - Unlike domain architecture that integrates functions by specific domains (e.g., ADAS)
- The aggregation of the local devices is relatively low bandwidth (i.e., < 1Gbps) except for cameras and other emerging new sensors as radar and lidar
- These new sensors are asymmetric, driving high-speed data toward the zone ECU and main ECU, and require only low bandwidth control data, with low latency
- A-PHY as a highly asymmetric PHY is well-situated to support use cases of zonal architecture that require high-speed data aggregation to the main computing unit

A-PHY-Based Zonal Architecture – Example

liance

- Focus on front end of vehicle to reduce clutter
- Each zone ECU aggregates multiple sensors and actuators
- Very high-speed data in direction of central computing unit
 - Camera (could be more than one)
 - Radar
 - Lidar
- Bidirectional information up to 1Gbps is supported for the aggregation of lowspeed sensors and actuators

A-PHY-Based Zonal Architecture

- Simplification of zonal ECU
 - Low computing overhead

- Lower protocol overhead Maintain native protocols for MIPI CSI-2 (e.g., camera) or Ethernet (e.g., lidar)
- Designed for ultra-low PER at high noise environment for the entire lifespan of the vehicle
- Future-looking design and easy migration path
 - Scalable downlink speed from 2Gbps to 64Gbps over a single cable
 - Flexible and rich protocol support
 - Layered security scheme supporting variety of use cases
 - Embedded functional safety
- Guaranteed interoperability and backward/forward compatibility

mipi^{alliance}

Modern Automotive Cockpit Displays

Modern Automotive Cockpit Displays

- Multiple connectivity schemes including daisy chain
- Up to **64Gbps** non-compressed data in single port
 - Up to **192Gbps with VESA DSC compression** with no additional overhead in single port
- Flexible uplink up to 1.6Gbps
 - Enable internal DMS² camera
- Ultra low PER¹ for the entire vehicle lifespan (zero errors)
- End-to-end functional safety

alliance

- End-to-end advanced layered security
- Multiple protocol support (e.g., DSI, DisplayPort)

(1) PER – Packet Error Rate (2) DMS – Driver Monitoring System

Daisy Chain – General Structure

Da	isy C	Cha	in	Exam	ple	Sic	le Mirror blay (LEFT)	ead Up Display	Mirror play		Displ	Display
Config	Display 1 (LCD)	Disp (C	olay 2 ID)	Display 3 (CDD)	Total BW Gbps	0	AIO		Lin	k 3	3	
1	3840x2160	3840	x2160	3840x2160	37.6	P		Driver trument Display	Link			
2	3840x2160	5120	x2160	5120x2160	45.8		Rear Seat Entertainment (LEFT)					En
3	7680x2800	7680	x2800	7680x2800	96.5	7		A-PHY A-F	PHY A-PHY	1	1	
								A-PHY	CU A-PHY	h		
		Config	DSC	Actual BW Gbps	Link	(1	Link 2	Link 3		Gear		Single Lane BW (Gbps)
		1	-	37.6	DL-0	G6	G7	G5		G1		2
		1	+	12.5	GS	5	G4	G3		G2		4
			-	45.8	DL-0	G7	DL-G6	G 6		G3		8

G5

Requires compression

G6

mipialliance

2

3

+

+

Assumptions: Uncompressed 24-bit/pixel or DSC 8bpp, 60fps, CVT-2 Blanking overhead DSC: VESA Display Stream Compression

15.3

96.5

32.2

G6

DL-G6

59 U ZUZZ IVIIPI AIIIdHCE, INC.

24

32

48

64

12

16

24

32

G4

G5

G6

G7

G3

G4

Summary

- A-PHY is the first asymmetric long-reach optimized video transmission standard for the automotive market.
- Resilient and robust solution for the whole lifespan of the car, designed to meet the unique noise and stress challenges of the automotive world.
- MIPI Alliance is continuously working on A-PHY to meet the evolving needs of the market and to provide a complete package to support the ecosystem.
- Next-generation A-PHY will bring:
 - Higher speeds
 - More adaptation layers supporting more interfaces
 - Increased design flexibility
 - Enhanced security

MIPI Automotive Resources

Information on A-PHY can be found at:

- <u>MIPI A-PHY Specification Homepage</u>
- MIPI White Paper: Introduction to MASS

