

IF IT'S NOT MIPI, IT'S NOT MOBILE

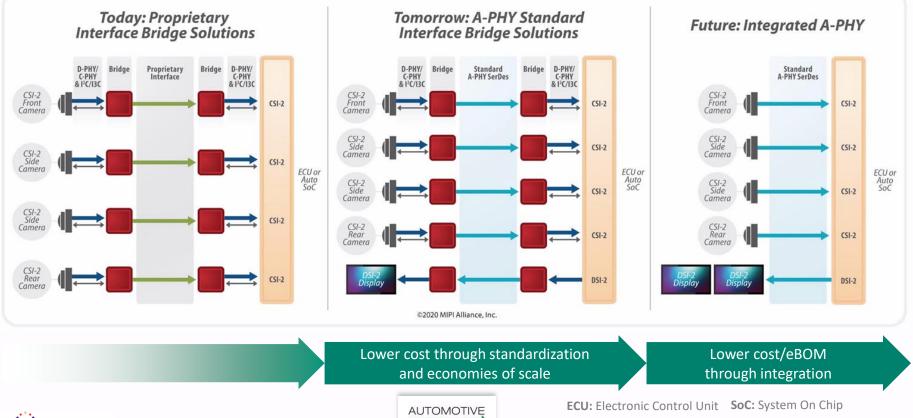
Let's Get Practical

How Can You Benefit from MIPI A-PHY

Edo Cohen

MIPI A-PHY Working Group Co-Chair Valens Semiconductor 13 October 2021

MIPI[®], CSI-2[®], DSI[®] and I3C[®] are registered trademarks of MIPI Alliance. A-PHYSM, C-PHYSM, CSISM, D-PHYSM, DSI-2SM, MASSSM and PALSM are service marks of MIPI Alliance.



 $\mathsf{VESA}^{\circledast}$ is a registered trademark of the Video Electronics Standards Association.

A-PHY v1.0 Overview

MIPI A-PHY Overview

MIPI A-PHY – Automotive Long-Reach PHY

The first industry-standard *long-reach* asymmetric SerDes physical layer specification targeted for ADAS/ADS surround sensor applications and infotainment display applications

A-PHY v1.0 offers:

- Direct coupling to native CSI-2/DSI-2/DP-eDP protocols
- High performance of up to 16 Gbps over 10-15m
- High noise immunity, ultra low PER (< 10⁻¹⁹)
- Supports bridge-based and endpoint integration
- Support for automotive coax and STP\SPP channels
- Power over cable

****NEW**** A-PHY v1.1 Enhancements:

- Increased support for lower cost legacy cables
- Double uplink data rate
- Star quad cable support, enabling dual downlink operation

ADAS: Advanced Driver Assistance System ADS: Autonomous Driving System SoC: System On Chip

A-PHY v1.0 Performance- and Immunity-Based Profiles

Performance Variance and Scalability

• A-PHY scales up the bandwidth without changing the cables and connectors by increasing the PAM level

Noise Immunity (EMC RF Ingress) Variance

- Different OEMs have different requirements
- MIPI-conducted EMC tests at independent labs evaluating noise levels and shielding effects degradation after mechanical stress and aging

Two Performance / Noise Immunity Profiles

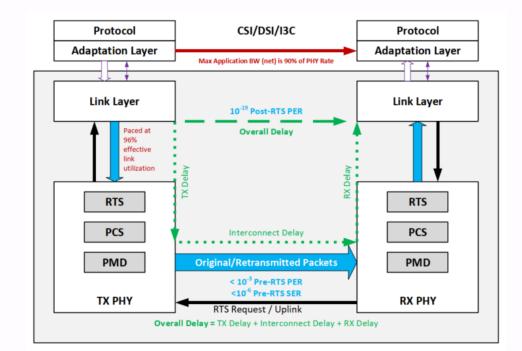
- Profile 1: Optimized for low cost/power implementations for lower gears with lower noise immunity and target PER <10⁻⁹
- Profile 2: Optimized for Vehicle Life-span, link robustness for all Gears with high noise immunity and target PER <10⁻¹⁹

Interoperability

- Full inter-profile interoperability
- A-PHY Device supporting Gear N (N could be 1–5) shall support all lower gears.

MIPI A-PHY v1.0 Performance

Downlink Gear Data Rate	Modulation	Modulation Bandwidth (GHz)	Max Net App Data Rate (Gbps)	
G1 2 Gbps	NRZ-8B/10B	1	1.5	
G2 4 Gbps	NRZ-8B/10B	2	3	
G3 8 Gbps	PAM4	2	7.2	
G4 12 Gbps	PAM8	2	10.8	
G5 16 Gbps	PAM16	2	14.4	
Uplink 100Mbps	NRZ-8B/10B	0.05	55 Mbps	



What Makes MIPI A-PHY So Robust and Efficient?

RTS + NBIC

- **Time bounded** local PHY level retransmission.
 - Only within a pre-defined "Overall Delay" (~6µs@G5)
 - Local: Transparent to the upper Layers
 - Local: Happens within a single A-PHY Hop
- Dynamic modulation for retransmitted packets with better error resistance
- Highly resilient
 - Overcome large Thousands symbols-long error bursts
 - Multiple 10s mV, instantly attacking NBI peaks
- High reliability → PER < 10⁻¹⁹
- Low overhead → 90% Net Data Rate

RTS: Re-Transmission Sub-Layer **N**

PMD: Physical Media Dependent PCS: Physical Coding Sub-Layer

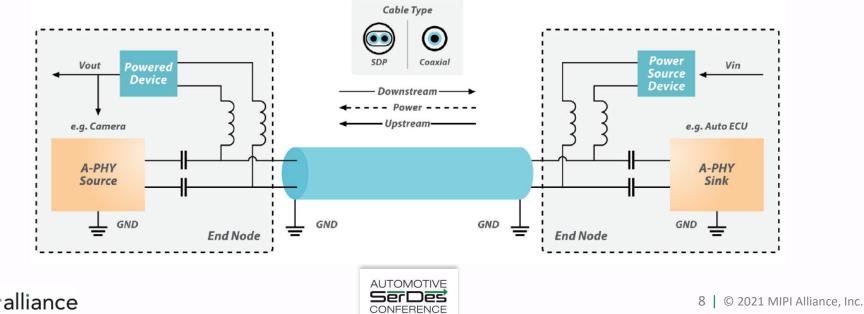
NBI: Narrow Band Interferences
PCS: Physical Coding Sub-Layer
6 © 2021 MIPI Alliance, Inc.

NBIC: Narrow Band Interferences Canceller

A-Packet

	A-Packet								
A-Packet Header							A-Packet Payload	A-Packet Tail	
(ſ
8-bit Adaptation Descriptor		8-bit Placement Descriptor	8-bit TX-D	8-bit Target Address	8-bit MC	8-bit Payload Length (N)	8-bit PHY Header CRC	Payload (K Payload Bytes)	PHY Tail CRC-32

- The A-Packet is structured to carry the Native Protocol data and all information that the A-PHY Data Link Layer requires to perform its functions efficiently.
- Downlink and uplink use the same packet structure.
- Structure optimized supporting multiple protocols aggregation with minimal overhead and latency
- The A-Packet Header contains all required information (e.g., QoS, Priority, Destination, Protocol Type).
- The A-Packet structure:
 - Header 8 Byte including MC (Message Counter)
 - Payload
 - Tail 4 Byte (CRC-32)



A-PHY Interconnect

- A-PHY is a single lane, point-to-point, serial communication technology
- Support for multiple cable types SDP/Coax
- Power over cable support

mipi

• Up to 15m with 4 inline connectors

A-PHY Functional Safety Features

- A-PHY packets are end-to-end protected as recommended in ISO-26262:2018:
 - CRC-32 for each packet, providing a Hamming-Distance of more than 3
 - Message Counter that is 8 bits wide
 - Timeout monitoring is fulfilled by the Keep-Alive function
- The above measures are necessary to argue a high diagnostic coverage for a communication bus, per Table D.6 in ISO 26262-5:2018
- All other functional safety features necessary to fulfill the required system-level safety goal with ASIL are expected to be managed by upper layers

A-PHY's tunnels, end-to-end, all the protection elements, allowing both Safety and Security (SPDM).

What's Coming in A-PHY v1.1

A-PHY v1.1 enhancements:

- 200 Mbps double rate uplink (U2)
- Optional PAM4 modes for G1 & G2
- Adds STQ cable support (see next slide)

Enhanced Performance Variance and Scalability

Expands PAM4 encoding to lower gears, reducing the operating signal rate of these gears and allowing implementation of A-PHY using lower cost legacy cables and connectors.

Same High Noise Immunity (EMC RF Ingress)

Supports same high noise immunity with an ultra-low Packet Error Rate $(< 10^{-19}) \rightarrow$ built for vehicle life span support

Interoperability and Compatibility

- A-PHY v1.1 backward compatible with v1.0
- A-PHY v1.0 forward compatible with v1.1

alliance

A-PHY guarantees full inter-profile interoperability; devices will support all the various gears below them

CONFERENCE

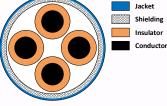
MIPI A-PHY Performance

A-PHY v1.1 enhancements shown in orange

Downlink Gear Data Rate	Modulation	Modulation Bandwidth (GHz)	Max Net App Data Rate (Gbps)	
G1	NRZ-8B/10B	1	1.5	
2 Gbps	PAM4 (Optional)	0.5	1.8	
G2	NRZ-8B/10B	2	3	
4 Gbps	PAM4 (Optional)	1	3.6	
G3 8 Gbps	PAM4	2	7.2	
G4 12 Gbps	PAM8	2	10.8 14.4	
G5 16 Gbps	PAM16	2		
Uplink Gear Data Rate	Modulation	Modulation Bandwidth (MHz)	Max Net App Data Rate (Mbps)	
<i>U1</i> 100 Mbps	NRZ-8B/10B	50	55	
U2 200 Mbps	PAM4-8B/10B	50	125	
	10 © 2021 MIPI Alli			

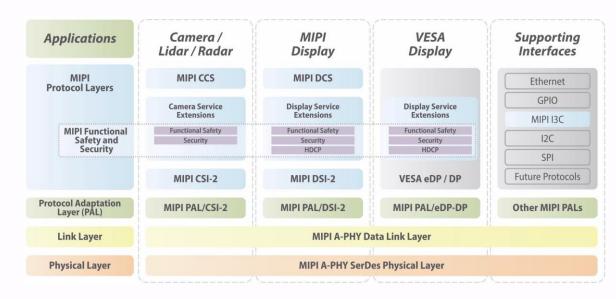
Inc.

A-PHY v1.1: Adds Support for STQ Cables


- Supports Star Quad (STQ) shielded dual differential pair (i.e., 4 conductor) cables and High-Speed Data (HSD) connectors.
- Referred to as "Q-Port" within the A-PHY working group.

mipralliance

• Efficient size, cost and weight compared to two separate Shielded Differential Pair (SDP) cables


CONFERENCE

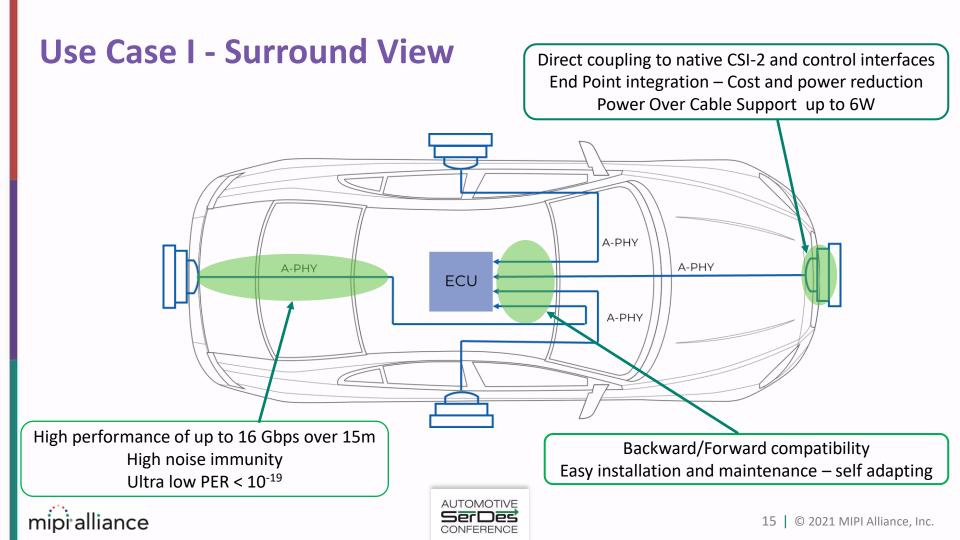
A-PHY is the Foundation of MIPI Automotive SerDes Solutions (MASS)

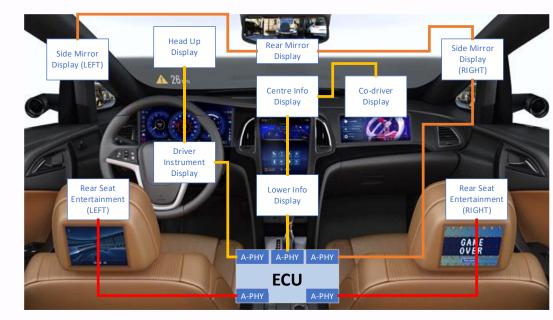
- Direct coupling to native MIPI protocols (i.e., CSI-2, DSI-2)
- End to End Functional Safety
- End to End Security (WIP)
- Multiple supporting interfaces:
 - I2C
 - GPIO
 - Ethernet
 - MIPI I3C (WIP)
 - SPI (WIP)

alliance

First MIPI A-PHY Compliant Chipset – Available

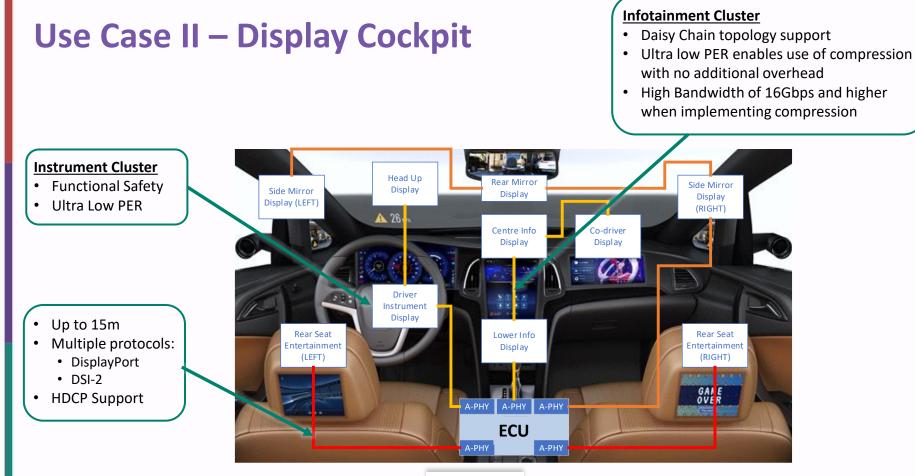
- MIPI A-PHY V1.0 compliant system
- Up to 8Gbps Downlink (G1-G3)
- ISO-26262, ASIL-B
- Serializer
 - CSI-2 input over D-PHY
 - 4 Data Lanes up to 2.5Gbps per lane
 - 16 Virtual Channels
 - Control I2C, GPIO
- Quad De-serializer
 - 4 x A-PHY Ports (G3)
 - 2 x CSI-2 output over D/C-PHY
 - D-PHY 4 Data Lanes up to 2.5Gbps per lane
 - C-PHY 2 Data Lanes up to 5.7 Gsps per lane
 - Control I2C, GPIO




Example Use Cases

Use Case II – Display Cockpit

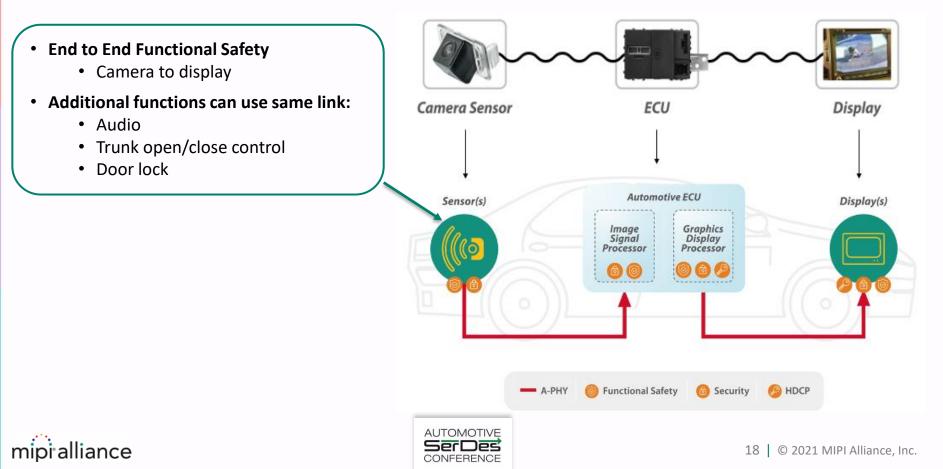
Disp	olay Type	Number	Size (Inches)	Example Resolution	Net Data Throughput (Gbps)
1	Driver Instrument Display	1	12.3	3840x1440	8.4
2	Center Information Display	1	12.3	3840x2160	12.6
3	Lower Control Display	1	12.4	3840x2160	12.6
4	Co-Driver Display	1	12.3	3840x2160	12.6
5	Side Digital-Mirror Displays	2	7	1280x800	1.5
б	Heads-Up Display	1	3.1	850x480	0.6
7	Rear Seat Entertainment	2+	12.5	3820x2160	12.6
8	Rear Digital-Mirror Display	1	9.7	1280x320	0.75



Notes

- Bandwidth calculation assumes 24b@60Hz VESA CVT 1.2 timing
- VESA DSC Compression can be applied with no additional overhead can support links of up to 48Gbps (~43Gbps net data)
- A-PHY V1.1 Dual Downlink (32Gbps) with compression can support up **96Gbps** (~86Gbps net data).
- A-PHY V1.1 provides flexibility for the return channel

mipialliance



Use Case III – Digital Backup Camera

Summary

Summary

- Established ecosystem with multiple vendors working on A-PHY compliant chipsets
 - First samples will be available by EOY2021
- Clear and forward-looking roadmap and planning
 - A-PHY v1.0 Released in 2020
 - A-PHY v1.1 Targeted for release in 2021
 - A-PHY v2.0 Work has started in the MIPI A-PHY Working Group
 - New PALs Expending support for command-and-control interfaces, such as SPI and Ethernet
- Supporting multiple advanced use cases with clear advantages of an industry standard
 - "Error Free" links
 - Seamless integration
 - Interoperability and forward compatibility

MIPI Automotive Resources

MIPI ALLIANCE EDUCATION

Automotive Workshop

17 November 2021

For automotive developers, system architects and engineering managers who are focused on the design, development, integration and test of next-generation automotive E/E architectures. Will cover:

- MIPI Automotive SerDes Solutions (MASS)
- Display and sensor (camera/lidar/radar) stacks
- Functional safety, security and data protection
- MIPI A-PHY implementation, system modelling and test.

https://www.mipi.org/events/2021-automotive-workshop

Information on A-PHY can be found at:

- MIPI A-PHY Specification Homepage
- MIPI White Paper: Introduction to MASS

Thank You

