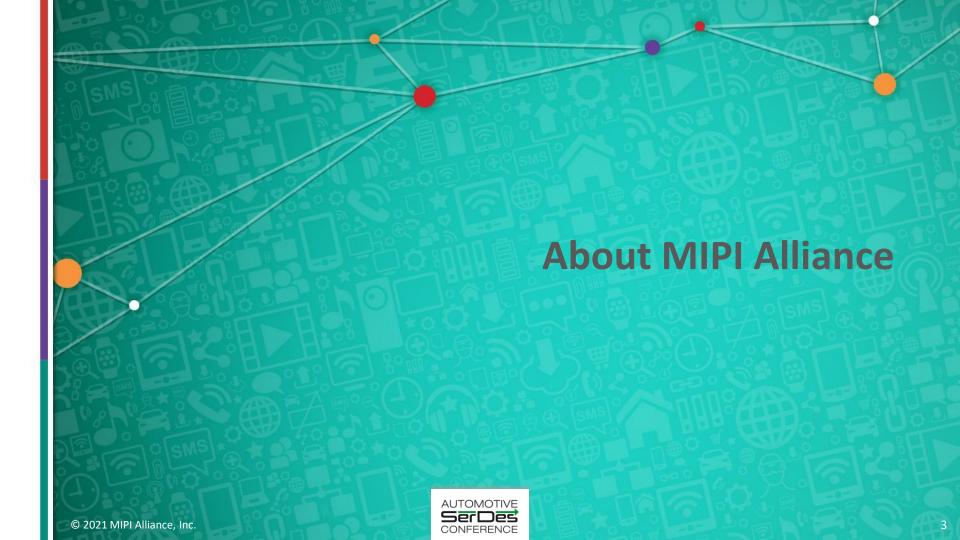


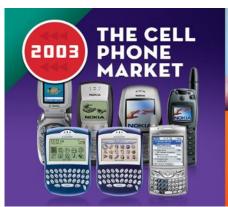
MIPI Automotive SerDes Solutions (MASS):

A Standardized Framework for Creating
Functionally Safe and Secure Automotive Sensor
Systems

MIPI A-PHY Working Group Vice Chair Qualcomm CDMA Technologies GmbH 13 October 2021

Agenda


- About MIPI Alliance
- Overview of MIPI A-PHY
- MIPI Automotive SerDes Solutions (MASS) Overview
- MASS End-to-End Protection
- MASS Security
- Summary
- Q&A


MIPI®, CSI-2®, DSI® and I3C® are registered trademarks of MIPI Alliance. A-PHYSM, C-PHYSM, CSESM, CSISM, D-PHYSM, DSESM, DSI-2SM, MASSSM and PALSM are service marks of MIPI Alliance.

VESA® is a registered trademark of the Video Electronics Standards Association.

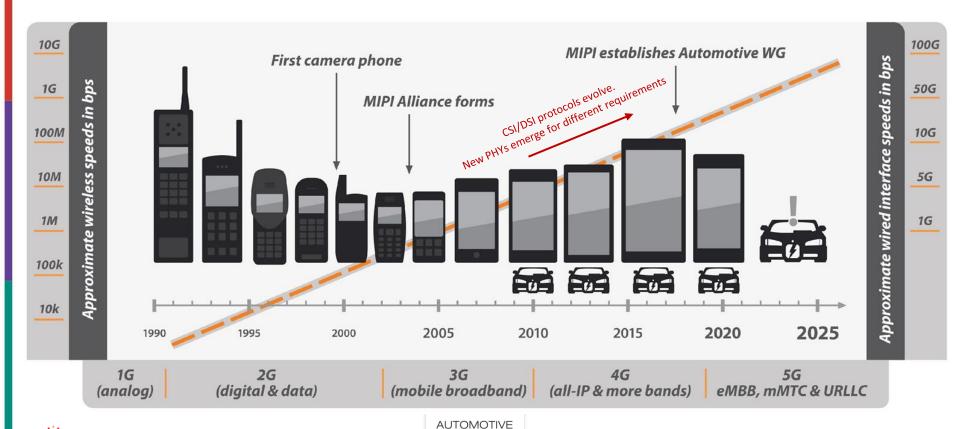
About MIPI Alliance

IN 2003
MIPI ALLIANCE
WAS FORMED
TO STANDARDIZE
CAMERA AND
DISPLAY
INTERFACES

MIPI ALLIANCE HAS
DEVELOPED MORE THAN
50 SPECIFICATIONS
COVERING THE FULL
RANGE OF INTERFACE
APPLICATIONS NEEDED
FOR MOBILE DEVICES

TODAY'S MIPI MEMBER ECOSYSTEM

Percentage of members active in automotive sector


MIPI Alliance Members in Automotive



MIPI and the Mobile Gs . . . Including Automotive

MIPI in Automotive

Cameras, displays, audio, sensors, storage, RFFE for 5G, Wi-Fi, Bluetooth, NFC

Reuse & extend well-proven protocols == reduced NRE/cost

Intra-box usage has been limited due to lack of native long-reach PHY

SPECIFICATIONS IN AUTOMOTIVE TODAY

Most MIPI interfaces are implemented as "short reach" (~15 to ~30cm+)

CSI-2

Camera Serial Interface protocol Protocol for cameras, lidar, radar sensors

DSI-2

Display Serial Interface protocol *Protocol for smartphone, IoT and automotive displays*

C-PHY SerDes

3-phase physical layer for CSI-2 & DSI-2

Short-reach physical layer for cameras and displays

D-PHY SerDes

Differential physical layer for CSI-2 & DSI-2

Short-reach physical layer for cameras and displays

13C

Control and data bus protocol and interface

Sensor and general-purpose data and control interface within a module

RFFE

RF control protocol

Front-end control within a wireless module

UniPro for JEDEC UFS

Data transport protocol for UFS over M-PHY

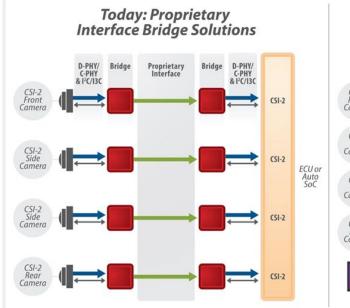
Transport protocol for UFS storage

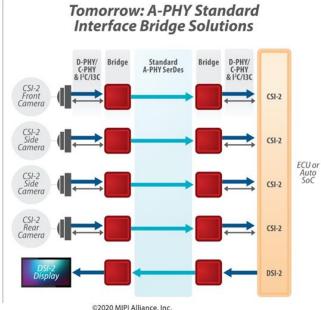
M-PHY SerDes for JEDEC UFS

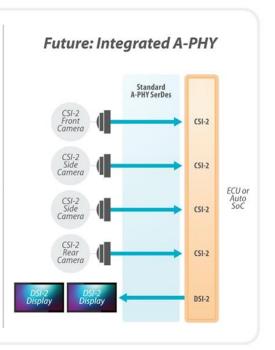
Differential physical layer for UFS storage

Short-reach physical transport for UFS storage

A-PHY SerDes


Long-reach (up to 15m) asymmetrical physical layer (released Sep 2020)





MIPI A-PHY Overview

Lower cost through standardization and economies of scale

Lower cost/eBOM through integration

MIPI A-PHY – Automotive Long-Reach PHY

The first industry-standard <u>long-reach</u> asymmetric SerDes physical layer specification targeted for ADAS/ADS surround sensor applications and infotainment display applications

A-PHY v1.0 offers:

- Direct coupling to native CSI-2/DSI-2/DP-eDP protocols
- High performance of up to 16 Gbps over 10-15m
- High noise immunity, ultra low PER (< 10⁻¹⁹)
- Supports bridge-based and endpoint integration
- Support for automotive coax and STP channels
- Power over cable

NEW A-PHY v1.1 Enhancements:

- Increased support for lower cost legacy cables
- Double uplink data rate
- Star quad cable support, enabling dual downlink operation

PER: Packet Error Rate

STP: Shielded Twisted Pair **SPP:** Shielded Parallel Pair

ADAS: Advanced Driver Assistance System

ADS: Autonomous Driving System **SoC:** System On Chip

MIPI A-PHY Activity

MIPI ALLIANCE NEWS

A-PHY v1.0 adopted as IEEE 2977-2021 (June 2021)

MIPI A-PHY **ADOPTED AS IEEE STANDARD**

Milestone expands access to automotive SerDes specification

WHAT'S NEXT:

A-PHY v1.1 development complete and will also be submitted to IEEE adoption process

MIPI Automotive SerDes Solutions (MASS) in the Car

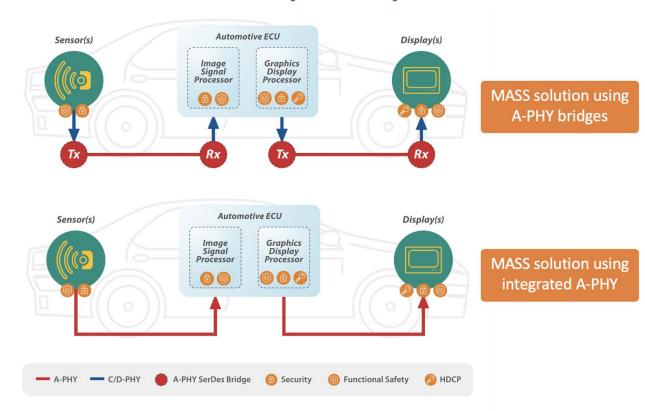
AUTOMOTIVE

CONFERENCE

Electronic Control Unit (ECU)

- Advanced driver assistance system (ADAS) based on sensor feeds
- Produces display feeds

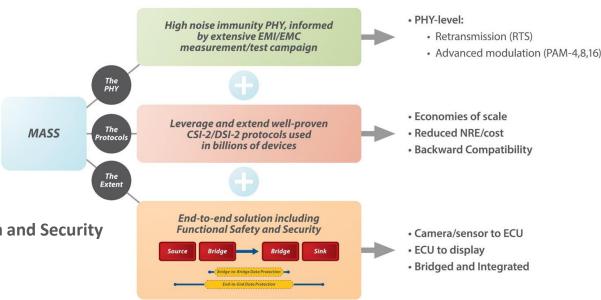
Sensors


- Camera
- Lidar

Displays

- Dashboard
- Console
- Side view mirrors
- Entertainment

(Optional) A-PHY Bridges


 Translates between short-range MIPI C-PHY / D-PHY & long-range MIPI A-PHY

MASS – Guiding Principles

A collection of MIPI specifications advancing camera and display solutions for automotive:

- **A-PHY**
 - Long reach PHY (15m)
 - v1.0: 2-16 Gbps (Coax, SDP)
 - v1.1: up to 32Gbps (STQ)
- **PAL: Protocol Adaptation Layers**
 - MIPI CSI-2, DSI-2 and I3C
 - VESA eDP/DP
 - Ethernet, I2C, GPIO
- Service Extensions for End-to-End FuSa and Security
 - CSE: Camera Service Extensions
 - DSE: Display Service Extensions
 - MIPI Security Specification

MASS – Solution Elements

Comprising PHY, Protocols and Extent for a flexible system solution

Robust Long-Reach PHY (PER 10⁻¹⁹)

- MTBF of 1 error over the full vehicle life-time
- Asymmetric high-speed link with fixed low latency ~6μs @G5
- High speed downlink and aggregation to support multiple 4K cameras and displays

Application-level End-to-End Functional Safety Application-level End-to-End Security

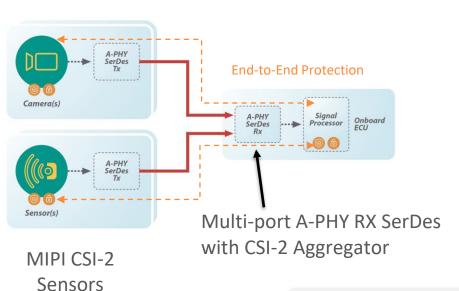
- End to end protection covering various topologies
- Flexible coverage: per frame, per ROI, per message, compression ON/OFF
- CRC for error detection
- Frame loss detection
- Time-out Monitoring
- BIST
- Faults injection

Authentication

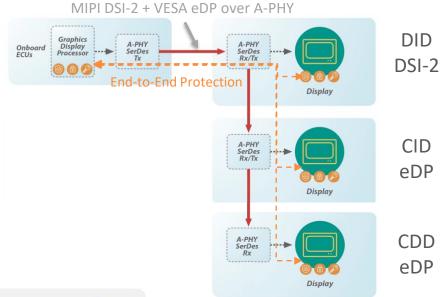
- Data integrity
- Encryption
- HDCP for display

Deep system level consideration for native interfaces and the legacy ecosystem

- Heterogeneous display protocols:
 - DSI-2, eDP/DP
- Different source/sink configs
 - C-PHY, D-PHY, # Lanes, I2C, I3C
 - Integrated A-PHY or bridged A-PHY



ROI: Region Of Interest MTBF: Mean-Time Between Failure


MASS – Examples for Supported Topologies

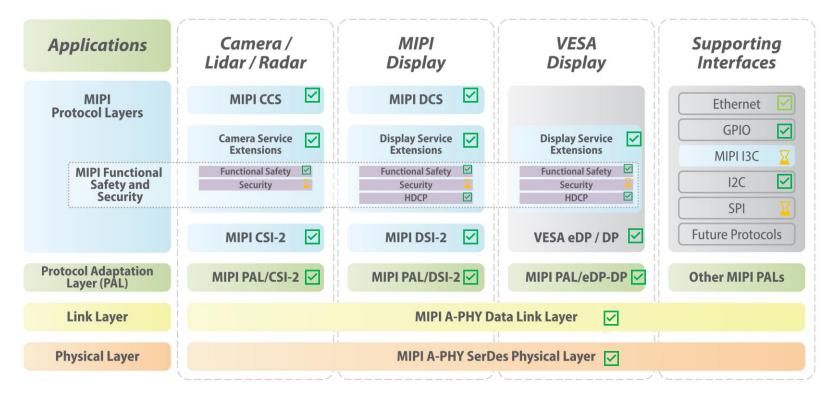
Security

Cameras and Sensors Aggregation

Daisy Chaining of Heterogeneous Displays

MDCP

Functional Safety


AUTOMOTIVE

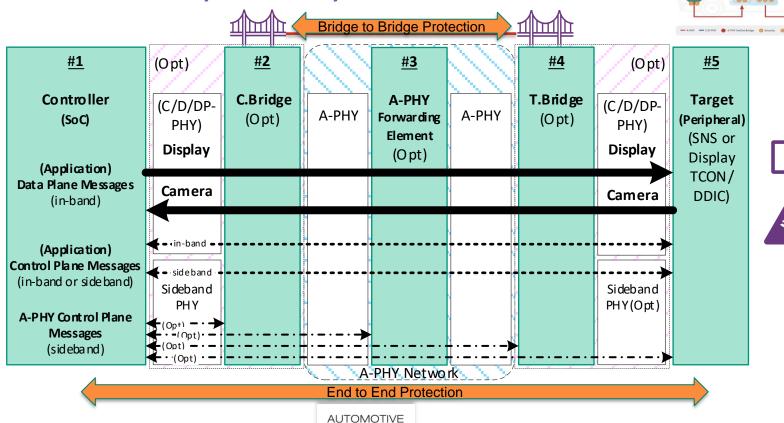
CONFERENCE

DID: Driver Instrument Display **CID**: Central Information Display

CDD: Co-Driver Display

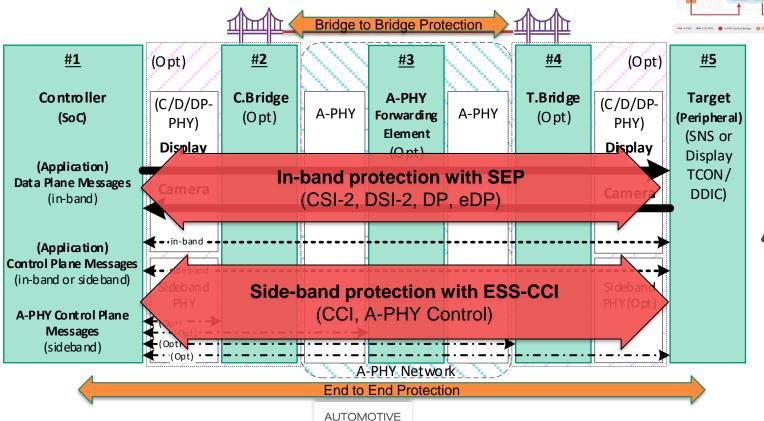
MASS Stack – Current Status

Specification published

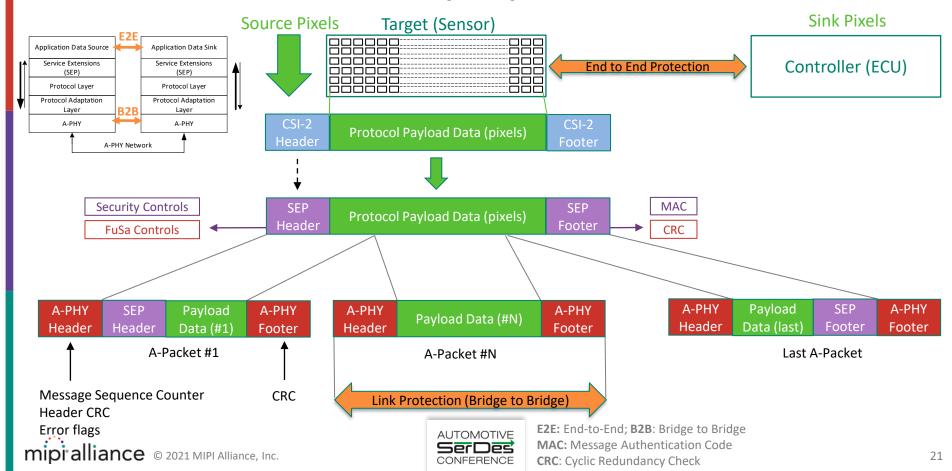

Completed – in adoption process

Work in progress

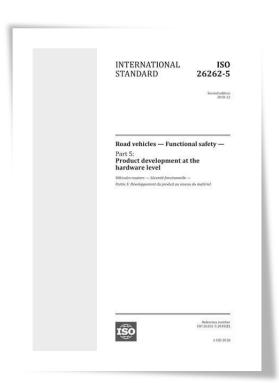
MASS 1-5 Model & MIPI Protocols


End-to-End Functional Safety and Security Protection

CONFERENCE


MASS 1-5 Model & MIPI Protocols

End-to-End Functional Safety and Security Protection



CONFERENCE

Service Extension Packets (SEP) for End-to-End Protection

ISO26262-5 Annex D – Communications Bus

Annex D – Communication bus safety mechanisms:

- One-bit hardware redundancy
- Multi-bit hardware redundancy
- Read back of sent message
- Complete hardware redundancy
- Inspection using test patterns
- Transmission redundancy
- Information redundancy
- Frame counter

AUTOMOTIVE

- Timeout monitoring
- Combination of information redundancy, frame counter and timeout monitoring

Functional Safety – A-PHY

A-Packets provide

- CRC-32 for each packet providing a Hamming Distance > 3 detecting communication failure (bad payload)
- Message Sequence Counter detecting packet loss / duplication
- Timeout Monitoring detecting potential loss of communication
- Header CRC header protection
- BIST

Functional Safety – Service Extensions (CSE/DSE)

Flexible End-to-End Functional Safety and Security framework with SEP

- Packet based: per SEP
- Frame based: per Video Frame
- Regions of Interest: per ROI
- With compression enabled/disabled

Example of FuSa Elements used

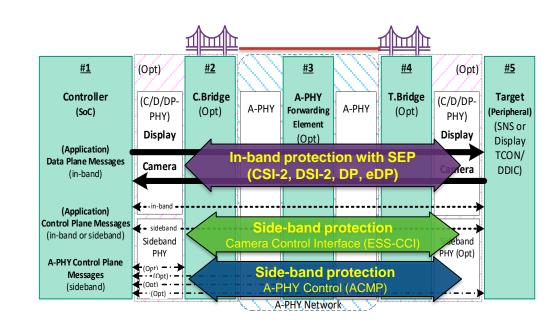
- CRCs with Hamming distance > 3
 - SEP Header CRC + SEP Footer CRC
 - ROIs, Compression Slices / Columns etc.
- Message Sequence Counter
- Timeout monitoring
- Test pattern generators (solid colors, color bar, tiles etc.)
- Faults injection checking error detection mechanisms

Example for ROI usage in Driver Information Display

Control Plane End-to-End protection

ESS-CCI: Enhanced Safety and Security – Camera Control Interface

Display: MIPI DSI-2


- In-band Control Plane is protected with SEP
- Defined in MIPI DSE Specification

Camara: MIPI CSI-2

- In-band Data Plane is protected with SEP
 - Defined in MIPI CSE Specification
- ESS-CCI for Camera Control Interface
 - I2C-based register access
 - Defined in MIPI CSE Specification

A-PHY Network: MIPI A-PHY

- ACMP for A-PHY Control
 - I2C-based register access
 - Re-use of ESS-CCI Protocol
- Defined in MIPI A-PHY Specification nipialliance © 2021 MIPI Alliance, Inc.

CCI: Camera Control Interface

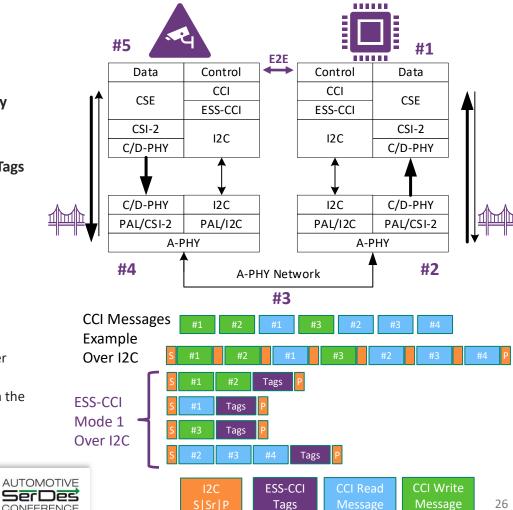
ACMP: A-PHY Control and Management Protocol

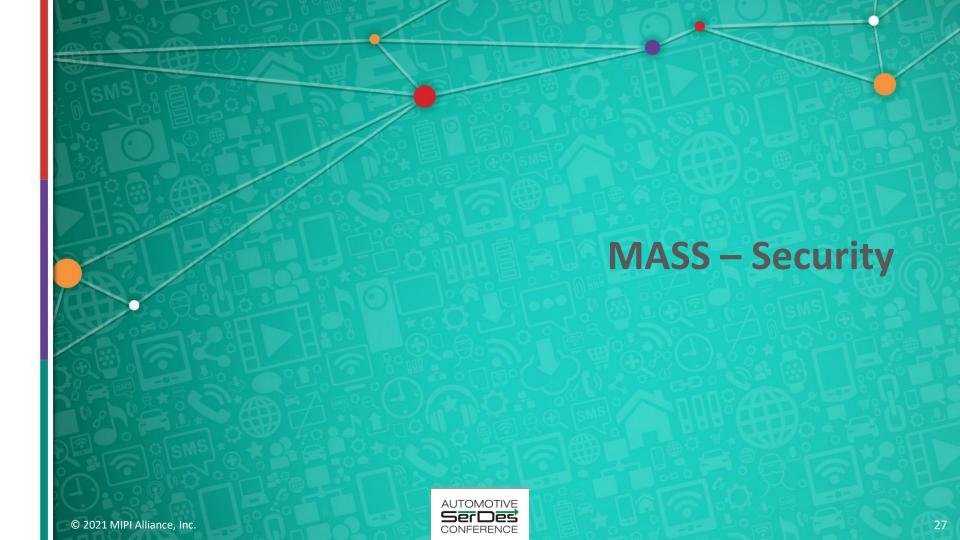
ESS-CCI

ESS-CCI provides services to support E2E FuSa and Security

- CSE v1.0 : Functional Safety Services
- CSE v2.0 : Provides FuSa + Security Services

CCI Read and Write Messages are extended with ESS-CCI Tags


- Message Counters and CRCs
- Separate Tags for Read and Write messages
- Tags are used for verification of the CCI messages


ESS-CCI Mode 1

- ESS-CCI Tags are transmitted along with the CCI Messages
- Each message can be verified and processed as soon as it is received by the Target or by the Controller

ESS-CCI Mode 2

- ESS-CCI Tags are accumulated over multiple messages (e.g per Frame)
- The accumulated Tags are sent as CSI-2 Embedded Data from the Target to the Controller
- The Controller verifies the ESS-CCI Tags
- No bandwidth overhead on I2C

What are the Data Security Services Protecting?

Image Data

- Integrity of Sensor images
- Confidentiality of Sensor images
- Integrity of Display images

Control Data

- Integrity of Sensors Capabilities/config
- Integrity of Display Capabilities/config
- Integrity of A-PHY Capabilities/config
- Confidentiality of all config

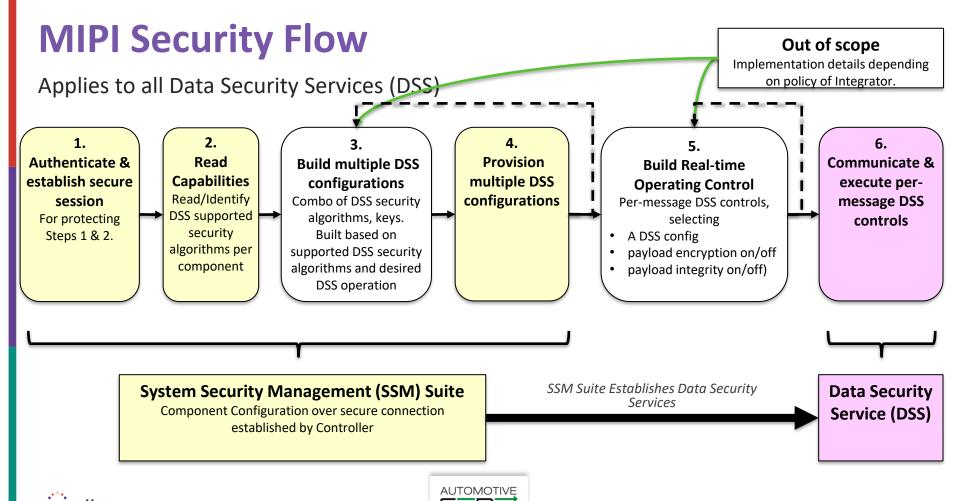
Security Considerations

Manipulating ADAS

Privacy: location-revealing images

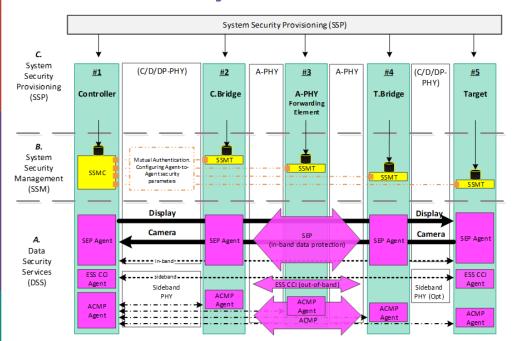
Incorrect dashboard display

Disable/manipulate sensor


Disable/manipulate display

Disrupt A-PHY network

Proprietary/sensitive/privacy



CONFERENCE

MIPI Security Framework

Framework can be applied directly from Controller #1 to Target #5 over any MIPI PHYs

SSMC: System Security Management Controller **SSMT**: System Security Management Target

DMTF: Distributed Management Task Force **SPDM:** Security Protocol and Data Model

System Security Management (SSM)

- Between SSMC (#1) and SSMTs (#2,#3,#4,#5)
- Authenticate and establishes secure sessions using DMTF's SPDM
 - DSP0274: Symmetric / Asymmetric mutual authentication
 - DSP0277: Secured Messages to protect MIPI SCAP (encryption and integrity protection)
- Service Association Configuration Protocol (SACP)
 - Read Security Capability Registers for DSS
 - Write Security SA Registers for DSS
- MIPI Security Specification

Apply Data Security Services (DSS)

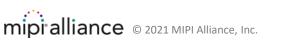
- Flexible DSS
 - Encryption
 - Integrity Protection via Message Authentication Codes (MAC)
 - Per Message / per Frame / per ROI → Trade-offs
- SEP Security for MIPI CSI-2, MIPI DSI-2 and VESA eDP/DP
 - To be specified in next versions of MIPI CSE, MIPI DSE
- Side band control channel security
 - ESS-CCI Security for Camera Control
 - Extending ESS-CCI to include DSS in next CSE version
 - ACMP Security for A-PHY Control (re-use of ESS-CCI)

Summary

- MASS provides a standardized framework enabling end-to-end FuSa and Security
 - Addresses both the data and control planes including side-band control
 - Flexible framework to allow tailoring the FuSA and security services for a wide range of use cases and OEM preferences
- MASS reuses widely adopted MIPI and VESA protocols to address automotive requirements
- MIPI has completed the first suite of MASS specifications
 - A-PHY v1.0 / v1.1, Protocol Adaptation Layers for CSI-2, DSI-2, VESA eDP/DP, I2C, GPIO, Ethernet
 - MIPI DSE and MIPI CSE providing service extensions for FuSa
- MASS Security Specification is expected in 2022

MIPI Automotive Resources

For automotive developers, system architects and engineering managers who are focused on the design, development, integration and test of next-generation automotive E/E architectures. Will cover:


- MIPI Automotive SerDes Solutions (MASS)
- Display and sensor (camera/lidar/radar) stacks
- Functional safety, security and data protection
- MIPI A-PHY implementation, system modelling and test.

https://www.mipi.org/events/2021-automotive-workshop

Information on A-PHY can be found at:

- MIPI A-PHY Specification Homepage
- MIPI White Paper: Introduction to MASS

