MIPI Automotive Workshop

15 November 2022

Live Virtual Event

1 © 2022 MIPI Alliance, Inc.

IF IT'S NOT MIPI, IT'S NOT MOBILE

<u>MIPI A-PHY®:</u> Continuing to Drive Innovation for In-Vehicle Connectivity

Raj Kumar Nagpal / Edo Cohen MIPI A-PHY[®] Working Group Co-Chairs 15 November 2022

42 © 2022 MIPI Alliance, Inc.

Agenda

- A-PHY v1.0 / v1.1
- Power over A-PHY (PoA)
- A-PHY v2.0
- A-PHY in Zonal Architecture
- A-PHY for Modern Automotive Cockpit Display
- A-PHY Compliance Program

A-PHY v1.0 / v1.1

MIPI A-PHY – MASS Cornerstone

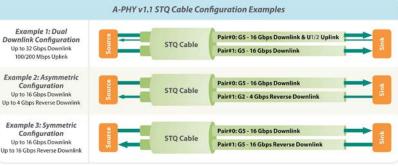
First industry-standard asymmetric SerDes physical layer specification targeted for ADAS/ADS and infotainment

applications

About A-PHY

(v1.0 released in Sep 2020)

- Direct coupling to native MIPI CSI-2[®] / MIPI DSI-2SM/ VESA DisplayPort[™] and eDP protocols
- High noise immunity, ultra low PER (< 10⁻¹⁹)
- Supports bridge-based and endpoint integration
- Support for automotive coax and SDP channels
- Power over cable
- Built-in functional safety according to ISO 26262
- Adopted by IEEE as IEEE 2977-2021

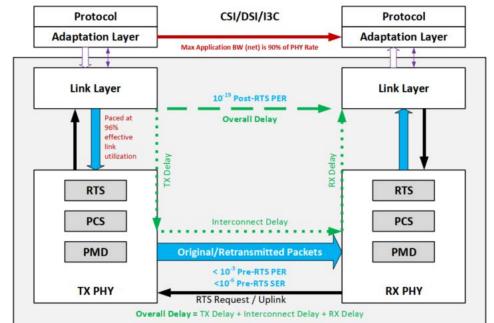

A-PHY v1.1 Enhancements

(released Dec 2021)

- Increased support for lower cost legacy cables
- Double uplink data rate
- Star quad cable support, enabling lower cost dual lane operation, for up to 32 Gbps data rate

MIPI A-PHY Performance A-PHY v1.1 enhancements shown in orange

Uplink Gear Data Rate	Modulation	Modulation Bandwidth (MHz)	Max Net App Data Rate (Mbps)	Downlink Gear Data Rate	Modulation	Modulation Bandwidth (GHz)	Max Net App Data Rate (Gbps)
U1			55	G1	NRZ-8B/10B	1	1.5
100 Mbps	NRZ-8B/10B	50		2 Gbps	PAM4 (Optional)	0.5	1.8
U2 200 Mbps	PAM4-88/108	50	125	G2 4 Gbps	NRZ-8B/10B	2	3
					PAM4 (Optional)	1	3.6
				G3 8 Gbps	PAM4	2	7.2
				G4 12 Gbps	PAM8	2	10.8
				G5 16 Gbps	PAM16	2	14.4

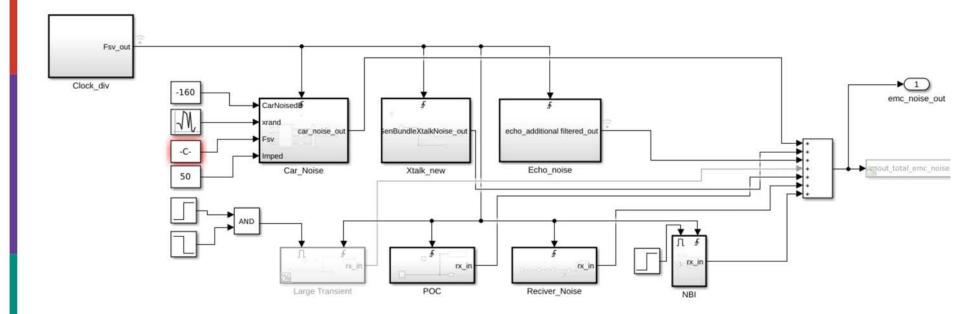

What Makes MIPI A-PHY So Robust and Efficient?

RTS + NBIC

- Time bounded local PHY-level retransmission
 - Only within pre-defined "Overall Delay" (~6μs@G5)
 - Local: Transparent to the upper layers
 - Local: Happens within a single A-PHY hop
- Dynamic modulation for retransmitted packets with better error resistance
- Highly resilient

alliance

- Overcomes large thousands symbols-long error bursts
- Multiple 10s mV, instantly attacking NBI peaks
- High reliability → PER < 10⁻¹⁹
- Low overhead → 90% net data rate

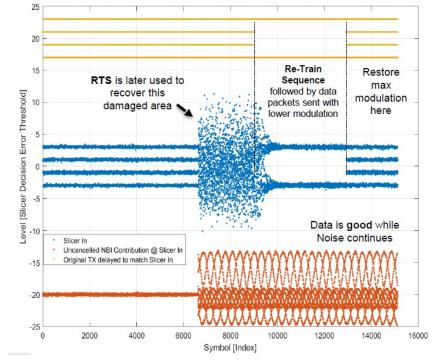

High throughput automotive links are EMI-limited — not AWGN limited

NBI: Narrow Band Interferences NBIC: Narrow Band Interferences Canceller **PCS:** Physical Coding Sub-Layer **PMD:** Physical Media Dependent

RTS: Re-Transmission Sub-Layer **AWGN:** Additive White Gaussian Noise

46 | © 2022 MIPI Alliance, Inc.

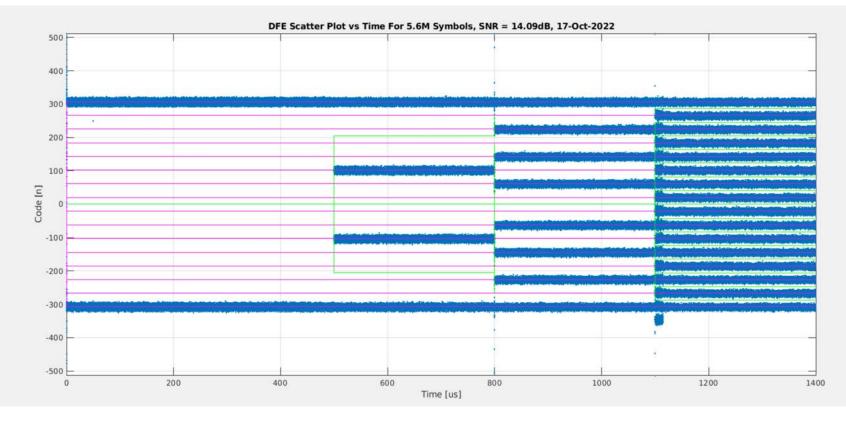
EMC Noises Part of Model as Per Spec


To Speed Up/Ensure JITC Convergence, JITC Re-training Is Used

Example: 4GBaud PAM4, 40mVpeak 3 Tone NBI, instant attack, without re-training

25 20 15 Threshold] 10 5 E Decis evel [Slicer -10 Slicer In Data is bad as long as Noise continues Uncancelled NBI Contribution @ Slicer In Original TX delayed to match Slicer In -20 -25 4000 2000 6000 8000 10000 12000 14000 16000 Symbol [Index] JITC: Just In Time Canceller

alliance

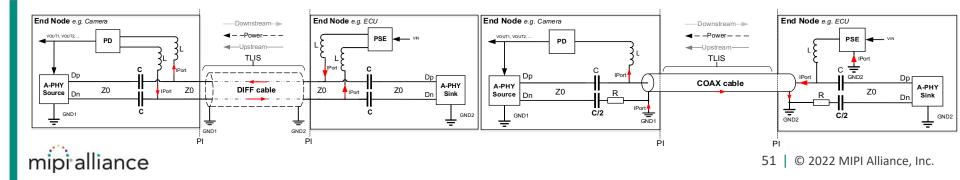

Without Re-training, Canceller cannot Overcome NBI Impact on Slicer

With Re-Training, Usage of "Known Data" Slicing Allows Canceller to Quickly Converge to Remove NBI Impact on Slicer

48 © 2022 MIPI Alliance, Inc.

PAM2/4/8/16 Scatter Results A-PHY v1.0 / 1.1

mipi alliance


49 © 2022 MIPI Alliance, Inc.

Power over A-PHY

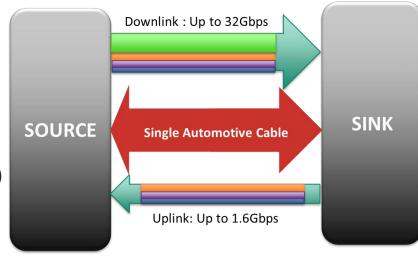
Power over A-PHY – PoA

- A-PHY v1.0 / v1.1 include a section on PoA
- Separate specification is being developed to provide better flexibility and enhanced capabilities without impacting the A-PHY specification
 - This specification will be backward compatible with current definitions
- A-PHY v2.0 will be aligned with the new PoA specification
- The new PoA specification introduces new power types A-PHY link can support to enable power over cable to multiple types of devices and use cases

	1		Pc	A System Ty	ype]
	1	Type 1	Type 2	Type 3	Type 4	Type 5	1
	I	12 V	12 V	24 V	24 V	48 V	1
_		Unregulated	Regulated	Unregulated	Regulated	Regulated	1
	Requirement	Class 1 ⁹	Class 3 ⁹	Class 5 ⁹	Class 7 ⁹	Class 9 ⁹	Additional Information
1	VPSE _{max} (V) ¹	18	18	36	36	60	See Section 7.2.2
2	VPSE_OCmin (V) ²	8.4	14.4	12	26	48	1
3	VPSE _{min} (V) ³	8	14.4	11.7	26	48	1
4	Icont _{max} (mA) ⁴	293	500	500	500	500	See Section 7.2.4 See Equation 5 for I _{CONT} when Vpse > Vpsemin.
5	Ppse _{min} (W) ⁵	2.34	7.2	5.85	13	24	See Section 7.2.5 See Equation 6 for Ppse when Vpse >Vpse _{min} .
6	VPD _{min} (V) ⁶	6.83	12.4	9.7	24	46	See Section 8.3.3
7	VPD _{max} (V) ⁷	18	18	36	36	60	
8	PPD _{max} (W) ⁸	2	6.2	4.85	12	23	See Section 8.3.1

A-PHY v2.0

A-PHY v2.0 – Main Goals


• Specification update focused on emerging architecture and use cases

- Zonal architecture and SDV (software-defined vehicle)
- Modern automotive cockpit environments
- Maintain backward compatibility to A-PHY v1.0 / v1.1
 - A-PHY v1.0 / v1.1 will be forward compatible with next A-PHY specification
- No changes in the upper layers
 - Easy migration with minimal impact at system level
- Maintain high EMC resilience and low packet error rate

A-PHY Next Generation – Main New Features

- **Double downlink throughput**
 - Up to 32Gbps (28.8Gbps net data rate) per single lane
- Uplink throughput increase
- Up to 1.6Gbps (1.166Gbps net data rate)
- **Enhance interface support**
 - Add 1Gb Ethernet support (based on the new uplink BW)
 - Other interfaces may be added based on market demand
- **Expand A-PHY secure control**
 - Enable support of a secure A-PHY network

Single Automotive Cable (Coax or SDP)

ETH

CSI-2

Downlink Gear Table (A-PHY v1.1)

Downlink Gear	Modulation	Modulation Bandwidth [GHz]	Data Rate [Gbps]	Max Net App Data Rate [Gbps]
61	NRZ-8B/10B	1	2	1.5
G1	PAM4	0.5	2	1.8
63	NRZ-8B/10B	2	4	3
G2	PAM4	1		3.6
63	PAM4	2	8	7.2
G3	NRZ-8B/10B	4	o	6
G4	PAM8	2	12	10.8
G5	PAM16	2	16	14.4

Downlink Gear Table (A-PHY v2.0)

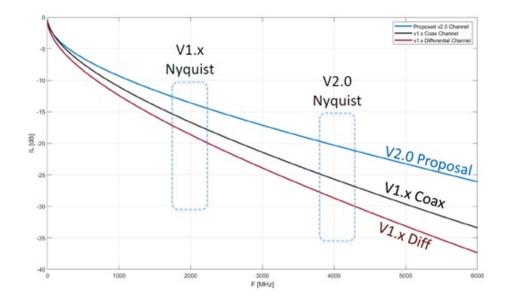
Downlink Gear	Modulation	Modulation Bandwidth [GHz]	Data Rate [Gbps]	Max Net App Data Rate [Gbps]		
C1	NRZ-8B/10B	1	2	1.5		
G1	PAM4	0.5	2	1.8		
G2	NRZ-8B/10B	2	_	3		
	PAM4	1	4	3.6		
C 2	PAM4	2	8	7.2		
G3	NRZ-8B/10B	4	ð	6		
G4	PAM8	2	12	10.8		
G5	PAM16	2	16	14.4		
G6	PAM8	4	24	21.6		
G7	PAM16	4	32	28.8		

mipi alliance

56 © 2022 MIPI Alliance, Inc.

Uplink Gear Table (Initial Proposal)

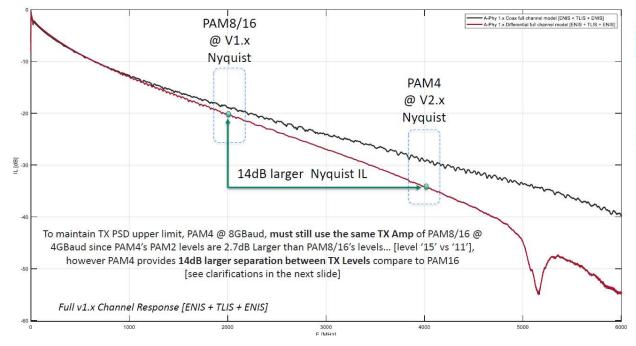
Uplink Gear	Modulation	Modulation Bandwidth [MHz]	Data Rate [Mbps]	Max Net App Data Rate [Mbps]
U1	NRZ-8B/10B	50	100	53
U2	PAM4-8B/10B	50	200	125
U3	PAM4-8B/10B	400	1600	1166



A-PHY v1.x and v2.0 Channels Proposed Link Segment (TLIS) For G6 & G7

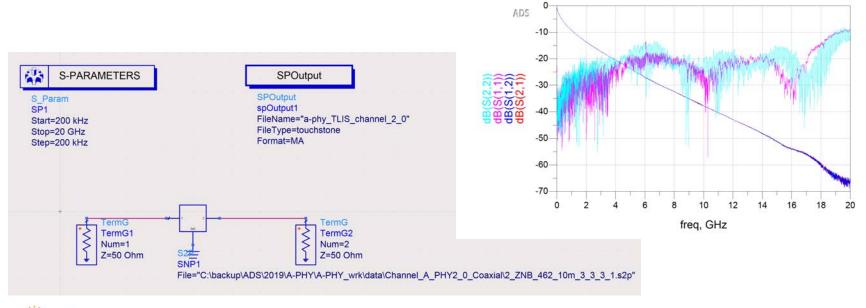
Single IL limit , reuse IEEE 802,3cy channel

nsertion
$$loss(f) \le 0.00135(f_{MHz}) + 0.3564(f_{MHz})^{0.45} + 0.495 \left(\frac{f_{MHz}}{7500}\right)^6$$
 (dB)


- New channel IL @ 4GHz is only slightly higher than V1.x channel at 2GHz
- To maintain TX PSD upper limit of -92dBm/Hz, G6/7, which operate at 8GBaud, will use TX Amp which is 3dB larger than in G4/5 @ 4GBaud

Optional G4/G5 with PAM4 @8GBaud

Optional G4/5 Using PAM4 @ 8GBaud over v1.x Channels


A-PHY V2.0 - Downlink Gear Table

Downlink Gear	Modulation	Nyquist Frequency [GHz]	Data Rate [Gbps]	Max Net App Data Rate [Gbps]
61	NRZ-88/108	1	2	1.5
01	PAM4 [Opt]		2	1.8
62	NRZ-88/108	2	4	3
62	PAM4 (Opt)			3.6
G3	PAM4	2	8	7.2
G4	PAM8	2	12	10.8
G5	PAM16	2	16	14.4
65	PAM4 [*Opt]	4	16	14.4
G6	PAM8	4	24	21.6
G7	PAM16	4	32	28.8

A-PHY v2.0 Channel Model

• Lab measured S-parameters

A-PHY in Zonal Architecture

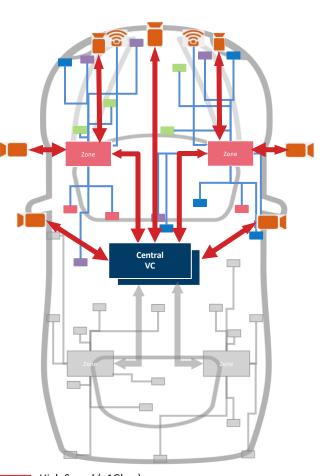
Zonal Architecture

Drivers

- Reducing wiring harness complexity and weight
- Centralized and scalable compute unit
- Reduced number of ECU and simpler hardware abstraction
- Simplified OTA updates and upgrades for Software Defined Vehicle (SDV)
- Software compatibility and Interface flexibility

OTA – Over The Air

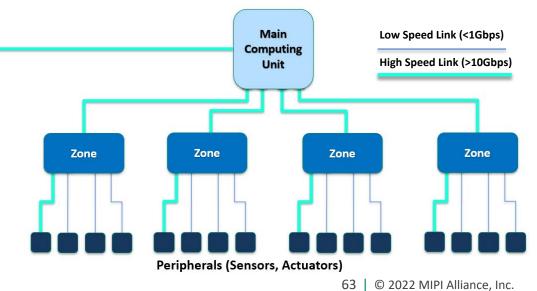
• Guidelines


- Aggregation of nodes in spatial proximity by Zone ECUs
- Central vehicle computer (VC)
- High-rate backbone

lliance

 Shared infrastructure across functional domains

Challenges


- Heterogeneous technologies
- Interoperability
- Topology depth
- Bandwidth
- Latency
- Efficiency

High Speed (>1Gbps) Low Speed (<1Gbps)

Zonal Architecture – High-Level Structure

- Strong demand for reductions of harness complexity and weight
- Data aggregation in zone with no change of data format(s) desired
- Hybrid connectivity direct or via zone
- Data processing centralized
 - Improved perception performance
 - Easier update and SW maintenance
 - Improved flexibility/scalability

Architecture Optimization

- Future looking Majority of high-speed links in the vehicle connect asymmetric edge devices
- Flexible Central VC should be able to <u>connect natively</u>, both to <u>aggregators</u> or directly to <u>edge devices</u>
- Optimized <u>Standardized communication</u> technology (PHY and protocol) should be <u>integrated into the</u> <u>high-speed edge devices</u>
- **Backward compatible** legacy interface gateways and low-bandwidth located in the spatial area of the zonal aggregators, may use a 100Mbps/1Gbps Ethernet backbone.

A-PHY is the perfect fit Zonal Architecture optimization

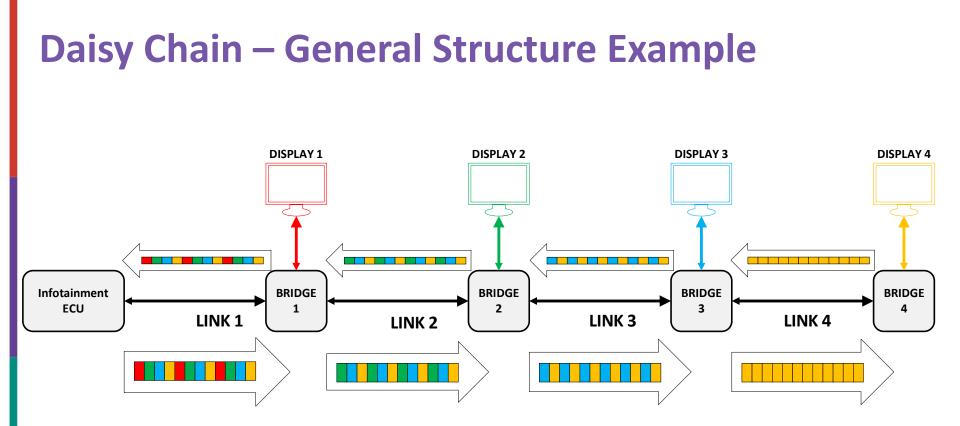
- Resilient asymmetric high-speed link (up to 32Gbps per lane) with clear forward roadmap
- <u>Only PHY natively integrated</u> to edge devices and aggregators (e.g., MIPI CSI-2)
- Multiplex both the high-speed asymmetric communication and the 1Gbps Ethernet backbone over the same cable.

mipialliance

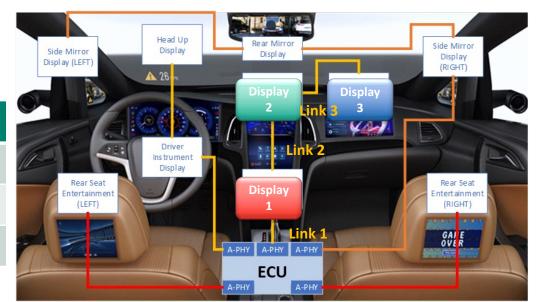
A-PHY for Modern Automotive Cockpit Displays

Modern Automotive Cockpit Displays

Modern Automotive Cockpit Displays


- Multiple connectivity schemes including daisy chain
- Up to **64Gbps** non-compressed data in single port
 - Up to **192Gbps with VESA DSC compression** with no additional overhead in single port
- Flexible uplink up to 1.6Gbps
 - Enable internal DMS² camera
- Ultra low PER¹ for the entire vehicle lifespan (zero errors)
- End-to-end functional safety

alliance


- End-to-end advanced layered security
- Multiple protocol support (e.g., MIPI DSI[®], VESA DisplayPort)

(1) PER – Packet Error Rate (2) DMS – Driver Monitoring System

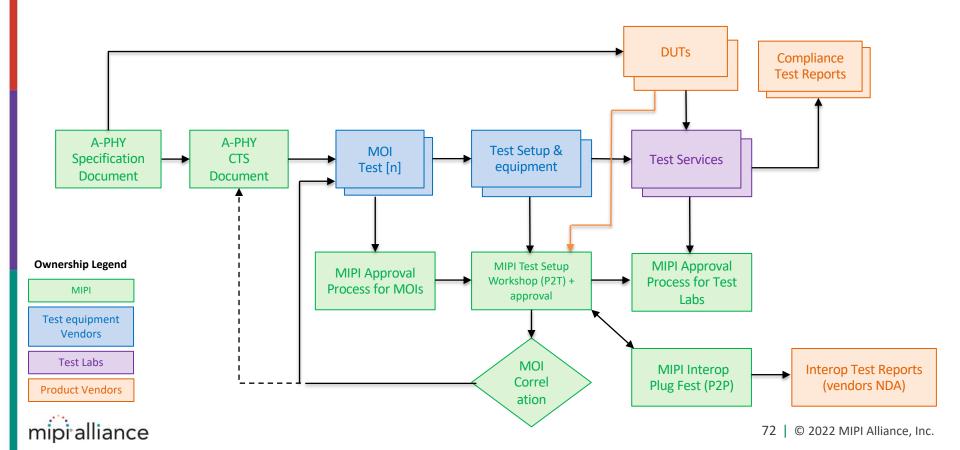
67 | © 2022 MIPI Alliance, Inc.

Config	Display 1 (LCD)	Display 2 (CID)	Display 3 (CDD)	Total BW Gbps
1	3840x2160	3840x2160	3840x2160	37.6
2	3840x2160	5120x2160	5120x2160	45.8
3	7680x2800	7680x2800	7680x2800	96.5

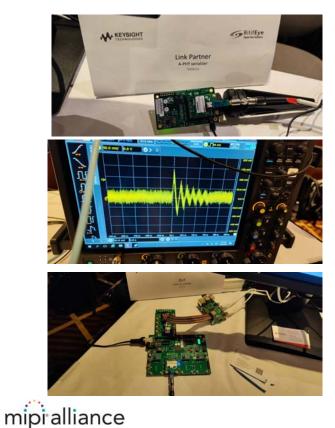
Config	DSC	Actual BW Gbps	Link 1	Link 2	Link 3
1	-	37.6	DL-G6	G7	G5
T	+	12.5	G5	G4	G3
2	-	45.8	DL-G7	DL-G6	G6
2	+	15.3	G6	G5	G3
2	-	96.5	Re	equires compressi	on
3	+	32.2	DL-G6	G6	G4

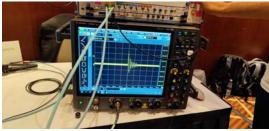
Gear	Single Lane BW (Gbps)	Dual Lane BW (Gbps)	
G1	2	4	
G2	4	8	
G3	8	16	
G4	12	24	
G5	16	32	
G6	24	48	
G7	32	64	
6	9 © 2022 MI	PI Alliance, Inc	

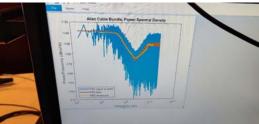
Assumptions: Uncompressed 24-bit/pixel or DSC 8bpp, 60fps, CVT-2 Blanking overhead DSC: VESA Display Stream Compression

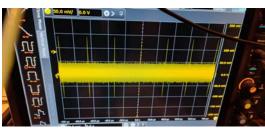

A-PHY Compliance Program

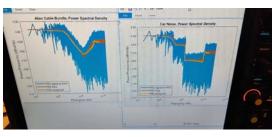
A-PHY Compliance Program


- MIPI Alliance is evaluating a compliance plan for A-PHY and MIPI Automotive SerDes Solutions (MASS^M) framework
 - Pilot activity **successfully completed phase I** and now in plan for next phase
 - Pilot program supervised by a test lab including two test vendors
 - All aspects of this activity will be reviewed for approval by MIPI Board of Directors
- All A-PHY tests are defined at box level (connector) and not at component level (i.e., chip)
- Currently, there is no impact on the membership requirements or any indication that this activity will increase product prices




Compliance Process – WIP


Test Demo Updates at Munich F2F



73 | © 2022 MIPI Alliance, Inc.

MIPI Automotive Workshop

MIPI Automotive Workshop

THANK YOU

Check back at <u>http://www.mipi.org/2022-automotive-workshop</u> to view recordings of any sessions you missed

102 | © 2022 MIPI Alliance, Inc.