MIPI Automotive Workshop

15 November 2022

Live Virtual Event

1 © 2022 MIPI Alliance, Inc.

IF IT'S NOT MIPI, IT'S NOT MOBILE

MIPI CSI-2[®] Security Framework: A New Approach for End-to-End Protection of Camera Data Streams

Rick Wietfeldt & Phil Hawkes, Qualcomm Inc. MIPI Security Working Group Co-Chairs 15 November 2022

76 © 2022 MIPI Alliance, Inc.

Overview

- MIPI Alliance is developing an industry security framework to protect MIPI CSI-2-based sensor data for ADAS/AD applications.
- We refer to the Security framework as *Source-selective Partial-integrity and Encryption (SSPIE)* to capture its key attributes of operating at the application layer (source-selective), offering flexible security levels (including partial integrity) and optional encryption.
- Specifications are targeting 1Q 2023 for MIPI member review.

Agenda

- MIPI Security Introduction
- Security Extent: End-to-end, Application-based
- Service Layering (Security, FuSa)
- Security Flexibility
- Summary

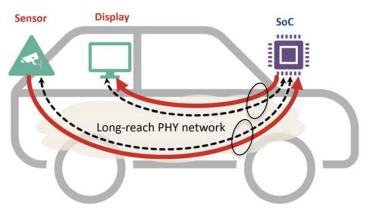
MIPI Security Introduction

MIPI Automotive Security Goals

Considerable (1-10s Gbps) sensor data volume from multiple (10-30) sensors over long distances (1-10-15m) Multiple sensor technologies (camera, lidar, radar) including for ADAS/AD

Authentication (required)

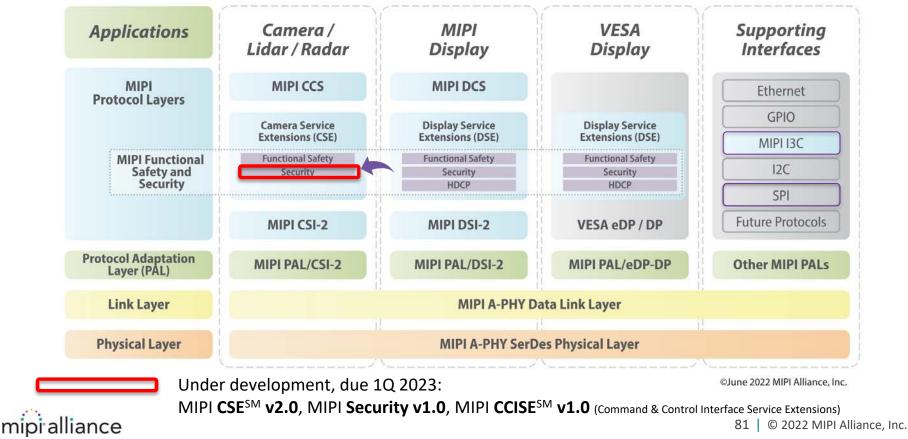
- Establishes trust between Sensor & ECU 1-way ("ECU validates the Sensor") or 2-way/Mutual authentication (both)
 - *Security consideration*: Legitimate components are installed to verify authenticity and performance


Integrity (required)

- Ensures sensor data/control is unaltered between Sensor & ECU
 - Security consideration: Manipulating sensor ADAS data
- Provided by Message Authentication Code (MAC)

<u>C</u>onfidentiality (optional)

liance


- Protects sensor data against unauthorized access between Sensor & ECU
 - Security consideration: Privacy: location-revealing images
- Provided by Message encryption

MASS Stack, MIPI Security for Camera Sensor

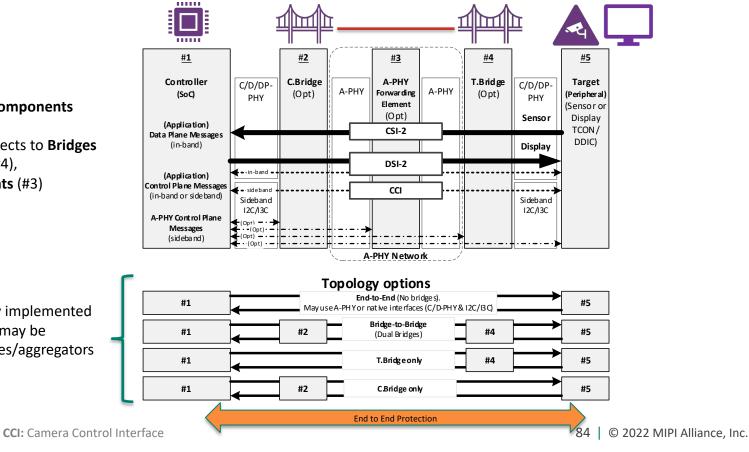
MASSSM: MIPI Automotive SerDes Solutions

MIPI Security Extent: End-to-End, Application-Based

MIPI Security Extent: "End-to-End" "App-Based"

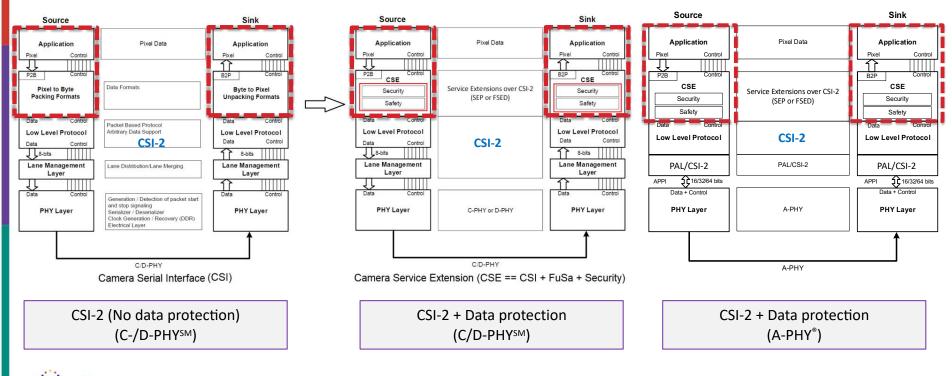
MIPI Security (and FuSa) *extent* may be described in two ways:

- End-to-End
 - From the "ultimate data source" (sensor) to the "ultimate data sink" (SoC), i.e., not involving intermediate bridges/aggregators
 - In MIPI's "1-5 Model" this means extent "1-5" (not involving entities 2, 3, 4)
- Application-Based
 - From the source Application layer to the sink's application layer
 - In CSI-2, by "Application layer" is meant "Pixels" (i.e., where Pixels are formed (post-ADC) to where Pixels are received for processing)


1-5 Model: Reference Topology

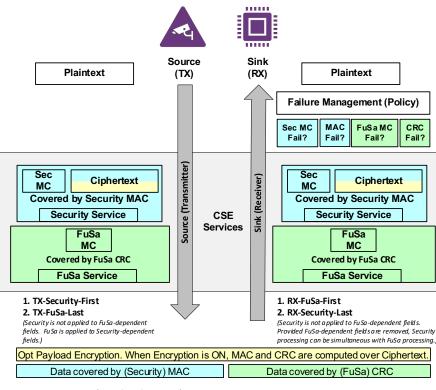
End-to-End Security and FuSa Protection

- Up to 5 functional **Components** in a system
- Controller (#1) connects to Bridges (Aggregators) (#2, #4), Forwarding Elements (#3) & Targets (#5)


• Security is nominally implemented only in #1 and #5 but may be implemented in bridges/aggregators #2 and #4 (not in #3).

liance

MIPI CSE Layering, Application Layer


CSE is "above" the CSI-2 protocol, at the **Application Layer** that operates on **Pixels** (Security & FuSa). Application-aware security allows app-specific security measures, e.g., protect only certain DTs [partial integrity].

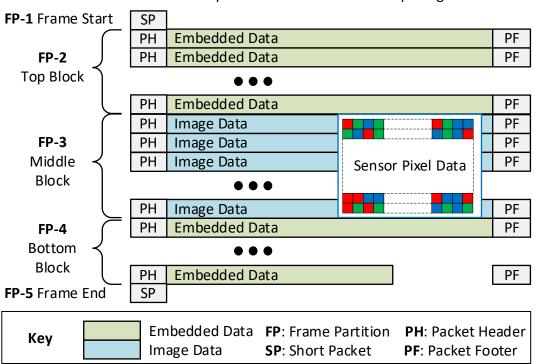
lliance

MIPI Service Layering: TX-Security-first, TX-FuSa-last

CSE Services Layering (Security, FuSa)

MAC: Message Authentication Code CRC: Cyclical Redundancy Check

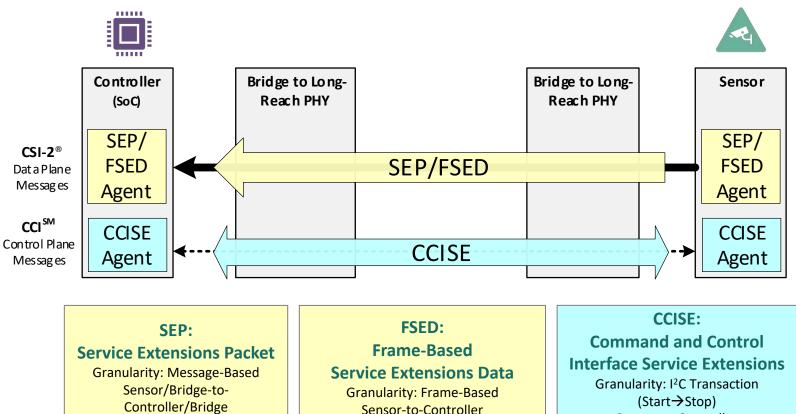
alliance


MC: Message Counter FuSa: Functional Safety

- TX processing:
 - TX Security-first
 - TX FuSa-last
- RX processing:
 - RX FuSa-first
 - RX Security-last
- Failure management policy is out-ofscope and implementationdependent

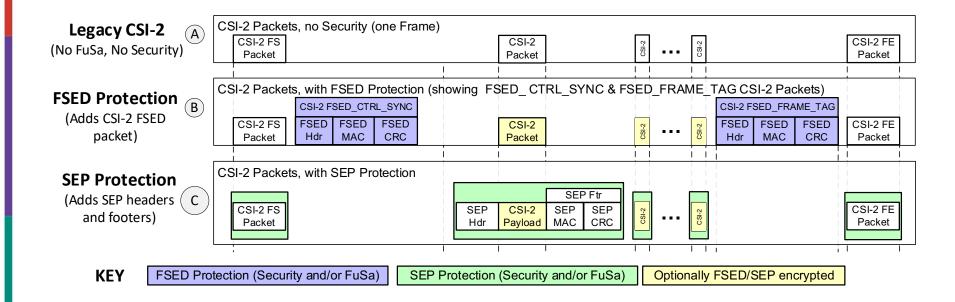
Security Flexibility

MIPI CSI-2 Frame Anatomy (Frame Partitions)


- A sensor can transmit data in multiple Virtual Channels (VCs)
- Each VC consists of a sequence of Frames
- Each Frame is a sequence of MIPI CSI-2 packets
- Frame can be partitioned into 5
 Frame Partitions (FP)
- MIPI CSI-2 packets from multiple
 VCs can be interleaved

The sequence of CSI-2 Packets comprising a Frame

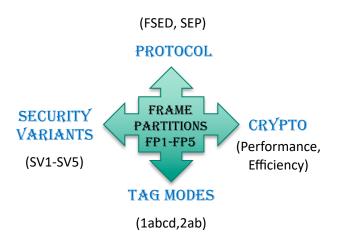
Security Provided by SEP, FSED, CCISE Protocols



Sensor-to-Controller

mipialliance

90 | © 2022 MIPI Alliance, Inc.


FSED/SEP: Protocol Comparison

Flexible Security

- Flexibility vectors, either fixed or flexible for each Frame Partition (FP) within a Frame
 - Protocol: fixed in a system for all frames
 - FSED, SEP
 - Crypto algorithms: f(FP)
 - Performance, efficiency selections
 - Tag Modes: f(FP)
 - How often to compute the MAC
 - Security Variants: f(FP)
 - Security levels including Partial Integrity

Note: f(FP) means the parameter is flexible for each Frame Partition.

Flexibility: Protocol FSED, SEP

FSED = Frame-based protocol, suitable for legacy and new systems

SEP = Packet and Framebased, suitable for new systems

A system may implement FSED, SEP or both. Only one is active in a given system (not dynamically changed).

FSED:	SEP:
CSI-2 format FSED Messages	SEP Header/Footer added to
inserted into Frame	
FP-1 Frame Start SP	PH SEP Header FN SEP Footer PF
PH FSED CTRL_SYNC including MAC PF	
FP-2 PH Embedded Data (Opt Enc) PF	PH SEP Header Embedded Data (Opt Enc)
Top \checkmark PH Embedded Data (Opt Enc) PF	PH SEP Header Embedded Data (Opt Enc)
Block ●●●	•••
PH Embedded Data (Opt Enc) PF	PH SEP Header Embedded Data (Opt Enc)
I PH FSED TOP TAG (opt) including MAC PF	
PH Image Data (Opt Enc) PF	PH SEP Header Image Data (Opt Enc)
FP-3 PH Image Data (Opt Enc) PF	PH SEP Header Image Data (Opt Enc)
Middle 🖌 PH Image Data (Opt Enc) PF	PH SEP Header Image Data (Opt Enc)
Block • •	•••
PH Image Data (Opt Enc) PF	PH SEP Header Image Data (Opt Enc)
FP-4 PH Embedded Data (Opt Enc) PF	PH SEP Header Embedded Data (Opt Enc)
Block	•••
PH Embedded Data (Opt Enc) PF	PH SEP Header Embedded Data (Opt Enc)
PH FSED FRAME TAG including MAC PF	
FP-5 Frame End SP	PH SEP Header FN SEP Footer PF
Key PH: Packet Header SP: Short Packet	
PF: Packet Footer FN: Frame Numb	er (from Frame Start/End SP)

ter added to CSI-2 Packets

PH	SEP Header	Embedded Data (Opt Enc)	SEP Footer (Opt) PF	
PH	SEP Header	Embedded Data (Opt Enc)	SEP Footer (Opt) PF	
•••				
PH	SED Hondor	Embedded Data (Opt Enc)	SEP Footer (Opt) PF	
	SEP Reduel	Linbedded Data (Opt Linc)		

PH	SEP Header	Image Data (Opt Enc)	SEP Footer (Opt) PF		
PH	SEP Header	Image Data (Opt Enc)	SEP Footer (Opt) PF		
PH	SEP Header	Image Data (Opt Enc)	SEP Footer (Opt) PF		
•••					
PH	SEP Header	Image Data (Opt Enc)	SEP Footer (Opt) PF		

SEP Footer (Opt) PF

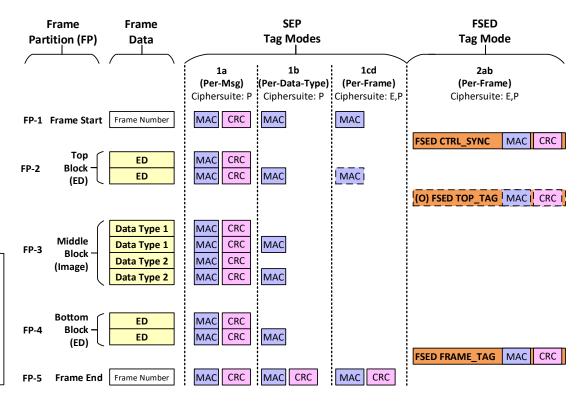
Flexibility: Crypto Algorithms

- "Efficiency" sensors: lower Gbps, *can't* afford additional HW
- "Performance" sensors: Higher Gbps, can afford additional HW
- Efficiency "E" Algorithms: AES-CMAC Integrity. No Encryption
 - AES HW for integrity only. Sensor *can't* afford encryption.
 - Not parallelizable limited throughput, but enough for "Efficiency" sensors

• Performance "P" Algorithms: AES-GMAC Integrity w/opt AES-CTR Encryption

- AES-GMAC needs Galois Field Multiplier HW
- (Opt) AES HW for encryption
- AES-GMAC and AES-CTR parallelizable easily scale for high performance MIPI CSI-2
- Both **algorithm** types ("E" & "P") support use of AES with 128 or 256-bit keys
- ECU controls which Ciphersuite is applied

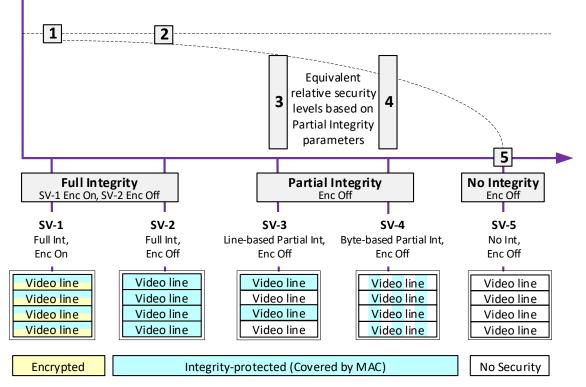
95 | © 2022 MIPI Alliance, Inc.


Flexibility: Tag Modes

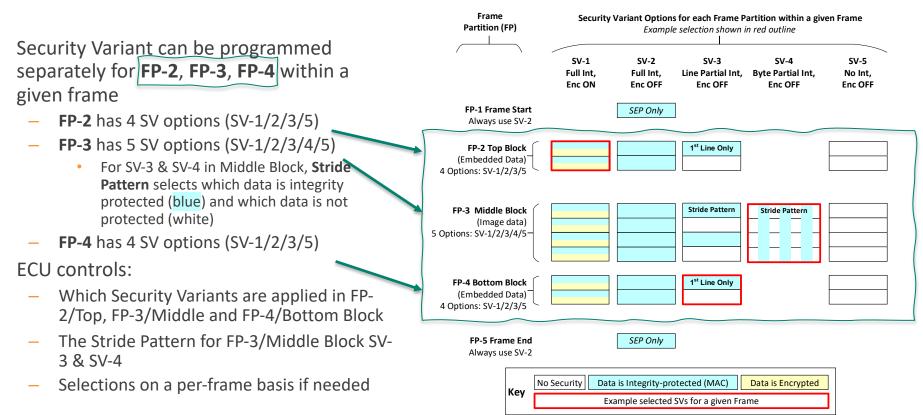
Tag = Security MAC &/or FuSa CRC

Tag Mode identifies when Tag is sent within a given Frame, & which packets are covered by Tag. Different for SEP/FSED.

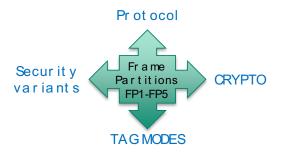
ECU controls which Tag Mode is applied.


KFY
ED: Embedded Data
Ciphersuite E: Efficiency
Ciphersuite P: Performance
Unencrypted Payload
Optionally Encrypted Payload
FSED Message

Flexibility: Security Variants


- Security Variants (SV) enable applying Integrity/Encryption for only specified portions of video frame
 - Enables tradeoffs between security level, computation and power consumption
- Partial integrity (SV-3, SV-4): some data are integrity protected; other data are skipped

Relative Security Level (Integrity)


Flexibility: Security Variant vs. Frame Partition

lliance

Flexible Security

- Of the four flexibility options (Protocol, Crypto, Tag Mode, Security Variant), most options may be fixed for an extended period of time, e.g., minutes to hours.
- ECU controls the security operations based on system needs
 - Each virtual channel is controlled independently
 - Changes can be applied on frame boundaries
- Partial integrity allows the most dramatic dynamic control of integrity computation, thus power and heat dissipation, mainly in the sensors where image quality may degrade with power/heat.

Summary

Summary

- MIPI CSE CSI-2-based security for ADAS/ADS offers OEMs a flexible security framework operating end-to-end and on an application basis. Distinguished from link-based security.
- MIPI Security flexibility enables system tradeoffs, such as using partial integrity to tradeoff security level for power/thermal reduction.
- The MIPI Security (v1.0), CSE (v2.0) and CCISE (v1.0) specs are targeted for **1Q 2023**
- MIPI CSE may be used on any SerDes/PHY where CSI-2 use is permitted by MIPI policy.
- Further information may be obtained via <u>admin@mipi.org</u>

MIPI Automotive Workshop

101 © 2022 MIPI Alliance, Inc.

MIPI Automotive Workshop

THANK YOU

Check back at <u>http://www.mipi.org/2022-automotive-workshop</u> to view recordings of any sessions you missed

102 | © 2022 MIPI Alliance, Inc.