MIPI ALLIANCE DEVELOPERS CONFERENCE

Raj Kumar Nagpal, Edo Cohen MIPI A-PHY WG co-chairs Ariel Lasry MIPI A-PHY WG vice-chair

MIPI Automotive SerDes Solutions: New Developments in A-PHY[®] and the MASSSM Connectivity Framework

20-21 SEPTEMBER

M@BILE & BEY@ND

Agenda

2022

- MIPI Automotive SerDes Solution (MASS)
- A-PHY Overview
- Next Generation A-PHY
- Summary
- Q&A

mipi^{DEVCON}

mipi DEVCON

MIPI ALLIANCE DEVELOPERS CONFERENCE

MIPI Automotive SerDes Solution (MASS)

MIPI.ORG/DEVCON

MOBILE & BEYOND

© 2022 MIPI Alliance, Inc.

20-21

SEPTEMBER

MIPI Automotive SerDes Solutions (MASS)

A framework for integrating sensors and displays with functional safety and security built in

Electronic Control Unit (ECU)

- Advanced driver assistance system (ADAS) based on sensor feeds
- Produces display feeds

2022

Sensors

- Camera
- Lidar

Displays

- Dashboard
- Console
- Side-view mirrors
- Entertainment

(Optional) A-PHY bridges

Translates between short-range MIPI C-PHYSM / D-PHYSM

& long-range MIPI A-PHY

MIPI.ORG/DEVCON

M@BILE & BEY@ND

MASS Guiding Principles

Service Extensions

2022

- CSESM: Camera Service Extensions
- DSESM: Display Service Extensions
- CCISESM: Command and Control Interface Service Extensions
- MIPI Security Specification

PALs: Protocol Adaptation Layers

- MIPI CSI-2[®], MIPI DSI-2SM, I3C[®]
- VESA eDP/DP
- Ethernet, I2C, GPIO, SPI, Audio

A-PHY

- Robust PHY for Automotive
- MTBF of 1 error over the full vehicle life-span
- Long reach PHY (15m)
- Coax, SDP and STQ cables

SDP: Shielded Differential Pair

STQ: Star Quad (shielded dual differential pair)

MOBILE & BEYOND

MIPI.ORG/DEVCON

MTBF: Meantime Between Failure

© 2022 MIPI Alliance, Inc. 5

mipi^{DEVCON}

MASS Supported Topologies - Examples

Camera and Sensor Aggregation

MIPI.ORG/DEVCON

2022

Other common topologies are also supported but not shown

MOBILE & BEYOND

Daisy Chaining of Heterogeneous Displays

CID: Central Information Display

CDD: Co-Driver Display

mipi **DEVCON**

MASS Stack – Framework nearly completed

2022

mipi **DEVCON**

MASS Status

2022

Adopted Specifications	Under Development			
• A-PHY v1.0	A-PHY v1.1.1 Inclusive Terminology			
• A-PHY v1.1	• A-PHY v2.0 Higher data-rate, Security			
• PAL/CSI-2 v1.0	 PoASM v1.0 New specification 			
• PAL/DSI-2 v1.0	 PAL/SPI v1.0 New specification 			
• PAL/eDP/DP v1.0	PAL/I2C v1.0.1 Inclusive Terminology			
• PAL/GPIO v1.0	PAL/ETH v1.1 Support for frame preemption			
• PAL/I2C v1.0	PAL/I3C v1.0 New specification			
PAL/Ethernet v1.0	 MIPI Security v1.0 New Specification 	EW		
• CSE v1.0	CCISE v1.0 Command and Control Interface Service Extension			
• DSE v1.0	CSE v2.0 Security, FSED, Timestamping			
	DSE v1.1 Advanced FuSa, FSED, Timestamping, Audio			
	DSE v2.0 Security			
	• DCS SM v2.0 Automotive related commands			

In Adoption Process

PAL/CSI-2 v1.1 •

timestamping and synchronization

Published Application Notes

• A-PHY Profile 1 and Profile 2

Upcoming Application Notes

- A-PHY RTS and Retraining
- PoA: Power over A-PHY •

RTS: Retransmission FuSa: Functional Safety FSED: Frame Service Extensions Data

MIPI.ORG/DEVCON

MOBILE & BEYOND

0.00

Camera Service Extensions (CSE)

CSE v1.0

- End to End Functional Safety Services
- Message-based Functional Safety protection
- CSI-2 Packets are extended with SEP
- Message Counter and CRC are added per SEP
- Test pattern generation and Error Injection
- ESS-CCI Protocol for End to End Control Plane
 protection

SEP: Service Extensions Packet

2022

FSED: Frame Service Extensions Data

CRC: Cyclical Redundancy Check

CCISE: Command and Control Interface Service Extensions

ESS-CCI: Enhanced Safety and Security Camera Control Interface

CSE v2.0

- End to End Security Services: Encryption, Authentication
- FSED Protocol
- Frame-based protection
- SEP per "multiple messages" protection

CCISE v1.0

- Separate specification
- End to End protection of the Control Plane
- Backwards compatible to ESS-CCI in CSE v1.0
- Adding Security Services

MIPI.ORG/DEVCON

MOBILE & BEYOND

SEP and FSED – Example with CSE / CSI-2

MAC: Message Authentication Code

mipi **DEVCON**

CRC: Cyclical Redundancy Check

MIPI.ORG/DEVCON

2022

MOBILE & BEYOND

© 2022 MIPI Alliance, Inc. 10

FSED in Display Service Extensions (DSE)

- One FSED Message per DSI-2 Video Frame
- Contains FuSa & Security extension data
 - Frame number
 - CRCs
 - MACs
- FRAME CRC/MAC for Active Video Area
- TRANSPORT CRC/MAC for "meta data" (display commands and control)
- Region of Interest (ROI)
 - Up to 16 ROIs ROIs can overlap
 - 1 CRC per ROI
- Note: Security support from DSE v2.0 only

FSED: Frame Service Extensions Data

2022

M@BILE & BEY@ND

FuSa support for Compression

2022

MIPI.ORG/DEVCON

- Visually lossless compression with VESA DSC and VDC-M
- CRCs are calculated over the "reconstructed" pixels
 - Matching between TX and RX
 - Compression engine is covered by the CRC
- Compression engine runs over slices. To ease the implementation DSE defines Slice Columns
- Each Slice Column has its own CRC

MOBILE & BEYOND

- For ROI, CRC are calculated over the Slice Columns
- All CRCs are sent in the FSED Message at the end of the DSI-2 Video Frame
- DSE aligning with VESA on CRC calculations

mipi **DEVCON**

Control Plane Protection with CCISE

- Command and Control Interface Service Extensions (CCISE) add Security and FuSa services to CCI (I2C)
- CCISE Supports control of

2022

- A-PHY bridges and forwarding elements
- Any other device controlled via I2C (or virtual I2C with PAL/I2C).
- CCI (I2C) Transactions are extended with Tags
 - FuSa Tags: Message Counter, CRC
 - Security Tags: Message Counter, MAC
 - Separate Tags for Read and Write Messages
- Two CCISE verification modes
 - Mode 1: Per-Transaction. Tags are transmitted with the Messages and can be verified immediately by the Target or the Controller
 - Mode 2: Per-Frame. Tags are not transmitted with the Messages. Tags are calculated over an entire CSI-2 Frame, both at the Controller and at the Target. Tags are sent from the Target to the Controller
 - Within CSI-2 Embedded Data or
 - Controller read access to the Tags

Tags are verified by the Controller. Mode 2 is motivated by the speed limit of I2C interface.

CCISE Functional Safety Protection Flow

M@BILE & BEY@ND

mipi[®] DEVCON

MIPI ALLIANCE DEVELOPERS CONFERENCE

A-PHY Overview

20-21 SEPTEMBER

MIPI.ORG/DEVCON

MOBILE & BEYOND

© 2022 MIPI Alliance, Inc.

MIPI A-PHY: SerDes System Foundation

First industry-standard asymmetric SerDes physical layer specification targeted for ADAS/ADS and infotainment applications

MOBILE & BEYOND

About A-PHY

2022

(v1.0 released in Sep 2020)

- Direct coupling to native CSI-2/DSI-2/DP-eDP protocols
- High noise immunity, ultra low PER (< 10⁻¹⁹)
- Supports bridge-based and endpoint integration
- Support for automotive coax and SDP channels
- Upto 15m long reach with 4 inline connectors
- Power over cable
- Built-in functional safety according to ISO 26262
- Adopted by IEEE as IEEE 2977-2021

A-PHY v1.1 Enhancements

(released Dec 2021)

- Increased support for lower cost legacy cables
- Double uplink data rate
- Star quad cable support, enabling lower cost dual lane operation, for up to 32 Gbps data rate

PER: Packet Error Rate SDP: Shielded Differential Pair

Uplink Gear Data Rate	Modulation	Modulation Bandwidth (MHz)	Max Net App Data Rate (Mbps)	Downlink Gear Data Rate	Modulation	Modulation Bandwidth (GHz)	Max Net App Data Rate (Gbps)
U1 100 Mbps NRZ-8B/10B 50 55 G1 Z Gbps	NRZ-88/108	1	1,5				
	NRZ-8B/10B	50	55		PAM4 (Optional)	0.5	1,8
U2	PAM4-88/108	50	725	G2 4 Gbps	NRZ-88/108	2	3
200 Mbps					PAM4 (Optional)	1	3.6
				G3 8 Gbps	PAM4	2	7.2
		G4 12 Gbp	G4 12 Gbps	PAM8	2	10.8	
				G5 16 Gbps	PAM16	2	14.4

MIPIA-PHY Performance A-PHY v1.1 enhancements shown in orange

MIPI.ORG/DEVCON

What Makes MIPI A-PHY So Robust and Efficient?

High throughput automotive links are EMI-limited — not AWGN limited

Protocol

Adaptation Layer

RTS + NBIC

2022

- Time bounded local PHY-level retransmission
 - Only within pre-defined "Overall Delay" (~6µs@G5)
 - Local: Transparent to the upper layers
 - Local: Happens within a single A-PHY hop
- Dynamic modulation for retransmitted packets with better error resistance
- Highly resilient
 - Overcomes large thousands symbols-long error bursts
 - Multiple 10s mV, instantly attacking NBI peaks
- High reliability → PER < 10⁻¹⁹
- Low overhead → 90% net data rate

Link Layer Link Layer 10⁻¹⁹ Post-RTS PER Paced at **Overall Delay** 96% effective utilization RTS RTS PCS PCS Interconnect Delay PMD **Original/Retransmitted Packets** PMD < 10⁻⁵ Pre-RTS PER <10⁻⁶ Pre-RTS SER TX PHY **RX PHY RTS Request / Uplink** Overall Delay = TX Delay + Interconnect Delay + RX Delay

CSI/DSI/I3C

Max Application BW (net) is 90% of PHY Rate

NBI: Narrow Band Interferences **NBIC:** Narrow Band Interferences Canceller **PCS:** Physical Coding Sub-Layer **PMD:** Physical Media Dependent

RTS: Re-Transmission Sub-Layer **AWGN:** Additive White Gaussian Noise

MIPI.ORG/DEVCON

M@BILE & BEY@ND

mipi^{DEVCON}

Protocol

Adaptation Layer

To Speed Up/Ensure JITC Convergence, JITC Re-training Is Used

Example: 4GBaud PAM4, 40mVpeak 3 Tone NBI, instant attack, without re-training

Without Re-training, Canceller cannot Overcome NBI Impact on Slicer

MIPI.ORG/DEVCON

2022

A-PHY Channel models

• Application note providing technical details on system modeling both for Profile 1

and Profile 2 is available to MIPI members.

- Along with this application note, we provided the complete system model in ADS and Matlab at the MIPI member site.
- Information Location (for registered members) -
 - System model <u>https://members.mipi.org/wg/A-PHY/document/folder/14078</u>
 - Application note <u>https://members.mipi.org/wg/All-Members/document/download/84933</u>

FuSa: Functional Safety

2022

mipi **DEVCON**

mipi[®] DEVCON

MIPI ALLIANCE DEVELOPERS CONFERENCE

Next Generation A-PHY

MIPI.ORG/DEVCON

MOBILE & BEYOND

© 2022 MIPI Alliance, Inc.

20-21

SEPTEMBER

What's Next for A-PHY?

A-PHY v2.0

GOALS

2022

- Support emerging architecture and use cases:
- Zonal architecture and SDV (software-defined vehicle)
- Modern automotive cockpits
- Maintain backward compatibility
- Be forward compatible
- No changes in the upper layers for easy migration with minimal impact
- Maintain high EMC resilience and low packet error rate

PROPOSED FEATURES

- Double downlink throughput up to 32Gbps (28.8Gbps net data rate) per single lane
- Uplink throughput increase up to
- 1.6Gbps (1.166Gbps net data rate)
- Enhance interface support
- Add 1Gb Ethernet support (based on the new uplink BW)
- Other interfaces may be added based on market demand
- Enable support of a secure A-PHY
 network

A-PHY v1.1.1

Inclusive Terminology
 Errata

TEST PROGRAM

- Reference Compliance Test Suite nearly complete
- Pilot Compliance program under development

IEEE ADOPTION

□ v1.1.1 to be submitted to IEEE for adoption

NEW RESOURCES

- Retraining and Retransmission App Note
- Power Over A-PHY App Note
- Power Over A-PHY specification
- Link Layer and Link Layer Services App Note

MOBILE & BEYOND

A-PHY v2.0 – Initial Downlink Gear Table (per LANE)

Downlink Gear	Modulation	Modulation Bandwidth [GHz]	Data Rate [Gbps]	Max Net App Data Rate [Gbps]
G1	NRZ-8B/10B	1	2	1.5
91	PAM4	0.5	2	1.8
63	NRZ-8B/10B	2		3
G2	PAM4	1	4	3.6
63	PAM4	2	0	7.2
G3	NRZ-8B/10B	4	8	6
G4	PAM8	2	12	10.8
G5	PAM16	2	16	14.4
65	PAM4	4	16	14.4
G6	PAM8	4	24	21.6
G7	PAM16	4	32	28.8

Note:

2022

Green – New speeds @ 8GBaud

Orange – Under discussion

A-PHY v2.0 – Initial Uplink Gear Table

Uplink Gear	Modulation	Modulation Bandwidth [MHz]	Data Rate [Mbps]	Max Net App Data Rate [Mbps]
U1	NRZ-8B/10B	50	100	53
U2	PAM4-8B/10B	50	200	125
U3	PAM4-8B/10B	400	1600	1166

MIPI.ORG/DEVCON

2022

mipi **DEV**CON

Zonal Architecture

2022

- Zonal architecture is adopted by many OEMs, many times in conjunction with SDV.
 - Aggregation of sensors and actuators in spatial proximity by zone ECUs
 - Unlike domain architecture that integrates functions by specific domains (e.g., ADAS)
- The aggregation of the local devices is relatively low bandwidth (i.e., < 1Gbps) except for cameras and other emerging new sensors as radar and lidar
- These new sensors are asymmetric, driving high-speed data toward the zone ECU and main ECU, and require only low bandwidth control data, with low latency
- A-PHY as a highly asymmetric PHY is well-situated to support use cases of zonal architecture that require high-speed data aggregation to the main computing unit

A-PHY-Based Zonal Architecture – Example

- Focus on front end of vehicle to reduce clutter
- Each zone ECU aggregates multiple sensors and actuators
- Very high-speed data in direction of central computing unit
 - Camera (could be more than one)
 - Radar
 - Lidar
- Bidirectional information up to 1Gbps is supported for the aggregation of lowspeed sensors and actuators

2022

mipi^{DEVCON}

A-PHY-Based Zonal Architecture

- Simplification of zonal ECU
 - Low computing overhead

2022

mipi **DEVCON**

- Lower protocol overhead Maintain native protocols for MIPI CSI-2 (e.g., camera) or Ethernet (e.g., lidar)
- Designed for ultra-low PER at high noise environment for the entire lifespan of the vehicle
- Future-looking design and easy migration path
 - Scalable downlink speed from 2Gbps to 64Gbps over a single cable
 - Flexible and rich protocol support
 - Layered security scheme supporting variety of use cases
 - Embedded functional safety
- Guaranteed interoperability and backward/forward compatibility

MIPI.ORG/DEVCON

MOBILE & BEYOND

Power over A-PHY – PoA

• A-PHY v1.0/1.1 include a section on PoA

2022

- Seperate specification is developed to provide better flexibility and enhanced capabilities without impacting the A-PHY specification
 - This specification will be backward compatible with current defintions.
- A-PHY v2.0 will be aligned with the new PoA specification
- The new PoA specification introduces new power types A-PHY link can support to enable power over cable to multiple types of devices and use cases.

			Po					
		Type 1	Type 2	Type 3	Type 4	Type 5]	
		12 V	12 V	24 V	24 V	48 V		
		Unregulated	Regulated	Unregulated	Regulated	Regulated		
	Requirement	Class 1 ⁹	Class 3 ⁹	Class 5 ⁹	Class 7 ⁹	Class 9 ⁹	Additional Information	
1	VPSE _{max} (V) ¹	18	18	36	36	60	See Section 7.2.2	
2	VPSE_OCmin (V) 2	8.4	14.4	12	26	48		
3	VPSEmin (V) ³	8	14.4	11.7	26	48		
4	Icont _{max} (mA) ⁴	293	500	500	500	500	See Section 7.2.4 See Equation 5 for I _{CONT} when Vpse > Vpsemin.	
5	Ppse _{min} (W) ⁵	2.34	7.2	5.85	13	24	See Section 7.2.5 See Equation 6 for Ppse when Vpse >Vpse _{min} .	
6	VPD _{min} (V) ⁶	6.83	12.4	9.7	24	46	See Section 8.3.3	
7	VPD _{max} (V) ⁷	18	18	36	36	60		
8	PPD _{max} (W) ^B	2	6.2	4.85	12	23	See Section 8.3.1	

MIPI.ORG/DEVCON

M@BILE & BEY@ND

A-PHY & MASS Summary and Takeaways

- A-PHY provides a resilient and robust automotive SerDes standardized solution for camera, sensor and display applications
- MASS provides End-to-End functional safety and security protections enabling flexible invehicle network topologies.
- Native support for standard protocols CSI-2, DSI-2, VESA eDP and DP along with related interfaces.
- CSE v1.0 and DSE v1.0 are already including End-to-End FuSa services
- Next versions of CSE and DSE will include security and additional Frame-based FuSa services
- Future versions of A-PHY and MASS continue to scale and increase design flexibility.

MIPI.ORG/DEVCON

2022

MOBILE & BEYOND

mipi **DEVCON**

ADDITIONAL RESOURCES

2022

MIPI Automotive Workshop

For automotive developers, system architects and engineering managers who are focused on the design, development, integration and test of next-generation automotive E/E architectures. Will cover:

- MIPI Automotive SerDes Solutions (MASS)
- Display and sensor (camera/lidar/radar) stacks
- Functional safety, security and data protection
- <u>MIPI A-PHY</u> v2.0, Power over A-PHY, system modelling and test. <u>https://resources.mipi.org/knowledge-library/webinars/events/2022-</u> automotive-workshop

Information on A-PHY can be found at:

- <u>MIPI A-PHY Specification Homepage</u>
- <u>MIPI White Paper: Introduction to MASS</u>

MOBILE & BEYOND

mipi[®] DEVCON

MIPI ALLIANCE DEVELOPERS CONFERENCE

THANK YOU!

20-21 september 2022

MIPI.ORG/DEVCON

MOBILE & BEYOND

© 2022 MIPI Alliance, Inc.

mipi[®] DEVCON

MIPI ALLIANCE DEVELOPERS CONFERENCE

20-21 september 2022

MIPI.ORG/DEVCON

MOBILE & BEYOND

© 2022 MIPI Alliance, Inc.