Kondalarao Polisetti, Wesley Skeffington
Advanced Micro Devices, Inc./Xilinx Inc.

MIPI Sensor System-Interop and Debug for Vision Applications on a SOM
Agenda

• Introduction to SOM
• SOM market & projections
• Vision applications: Concept to production with SOM
• Accelerated applications
• System level challenges
• Q&A
What’s a System-on-Module (SOM)?

- Alternative to single board computers focused on enabling customized embedded systems
- A credit card sized module with an integrated SoC (CPU/GPU/FPGA), power, security module, & flexible I/O
- Offers more flexibility & contoured solutions
- Plugs into a carrier/base board for flexible application specific peripheral carrier card design
Advantages of SOM

• Reduces effort of ground-up electronics design
• Customers start at a more evolved point vs. chip-down design
• Enables customers to build multiple products based off the same SOM platform
• SW developers to start sooner, and HW designers to finish early in the cycle.
SOM Market Size and Application

• Global SOM Sales by Application

- Defense & Aerospace: 16.65%
- Communications: 21.99%
- Medical: 26.11%
- Automations & Control: 15.36%
- Automotive & Transport: 9.54%
- Others: 10.34%

Source: Expert Interview, Secondary Sources and QYR Electronics Research Center, July 2019

• Global SOM Sales forecast by Application

- Defence & AeroSpace: $1.3B
- Communications: $1.2B
- Medical: $1.1B
- Automations & Control: $1.0B
- Automotive & Transport: $0.9B
- Others: $0.8B

11% SOM Market CAGR

$2.3B SOM TAM by 2025*
SOM: Board Level HW Abstraction

- **Chip-down style**
 - Evaluate & select specific device
 - Build hardware prototype & prove all functional interfaces

- **SOM based**
 - Production ready OTS board with SoC, DDR4, and multiple MIPI compliant programmable interfaces
 - SW references with FPGA based acceleration prebuilt configurations
KV260 Vision AI Starter Kit

- Provides a framework for building & customizing video platforms
 - Capture pipeline
 - Video processing pipeline
 - Acceleration pipeline
 - Output pipeline
Kria Starter Kit Accelerated Applications

- Adaptive SOM simplifies application carrier card HW design & developer to focus on SW and AI development
- Prebuilt reference platforms, API’s enable full customization of FPGA based HW & acceleration capabilities
- AMD-Xilinx tools provide mapping of ML development environments like Python, C++, TensorFlow & PyTorch to FPGA accelerated HW on SOM
System Level Challenges

Issue: Image freezes

- Status at Controller: No output
- Status at MIPI D-PHY℠: Receiving packets without errors
System Level Challenge (Sensor Debug)

- Sensor output: HS <-> LP patterns looks good
 - Non-continuous clock mode
System Level Challenge (Controller Debug)

- Debug at Controller FSM:
 - PPI data not processed fully
 - Is it due to less rxbyteclkhs? (recovered clock)
System Level Challenges (Analysis & Solution)

- Utilized debug capabilities (ILA) in SOM FPGA PL fabric
- Analyzed sensor Tclk-post vs IP requirements
- Analyzed the system behavior and internal fabric logic for different Tclk-post settings
 - **SOLUTION**: Increasing Tclk-post setting of sensor resolved the issues
 - Batch testing PASSED
- Sensors used in SOM design: AR1335, AR0144, RPi etc.
System Level Challenges (Other Debug Scenarios)

- Other general challenges
 - Source generate user defined data along with Pixel data
 - Impact: Image corruption
 - Solution: Downstream video pipe must demux Pixel vs user defined data type
 - Source slightly out of spec (Ex: Less Tlpx period)
 - Impact: Controller don’t detect LP-HS transitions (LP-11 -> LP-01 -> LP-00)
 - Solution: Tune Tlpx of source
 - Source need more settle time before sending Sync pattern
 - Impact: Controller reports synchronization errors
 - Solution: Tune $T_{HS-SETTLE}$ parameter of receiver
Summary

• SOM with industry standard interfaces & communication protocols reduces development time
• SOM facilitates application and HW design with a greater degree of abstraction from chip-down designs
• SOM FPGA PL provides flexible I/O and I/O debug capabilities
• Closure of “Global timing parameters” to ease system level challenges
THANK YOU!