Ahmed Ella
Mixel Inc.

Jeffrey Lukanc
Synaptics

Dual Mode MIPI C-PHY℠/D-PHY℠
Use in VR Display IC
Outline

• GPU to Pixel VR Display System
• Mixel C-PHYSM/D-PHYSM IP in VXR7200
• Summary
GPU to Pixel VR Display System
GPU to pixel VR display system overview

Video over DP or USB-C connector from PC or smartphone

Flexible and Optimized GPU-to-Pixel Video Solution

MIPI D-PHY or C-PHY interface to displays

MIPI DSI

VXR7200 DP to MIPI Bridge

DP1.4

DP

MIPI

I2S

R63455 DDIC

LCD Display

R63455 DDIC

LCD Display

Video over DP or USB-C connector from PC or smartphone
VR Displays Drive Video Interface Technology

1. **PPI >1000 eliminates “screen door” effect & enables ability to read text**
 - Resolution: 2Kx2K minimum, better = 3Kx3K, ideal = 4Kx4K

2. **Display responsiveness**
 - For crisp LCD images, need to allocate frame time for pixel settling and backlight flashing
 - Additional time required for LCD to settle drives higher DP + MIPI bandwidths

3. **VR systems require higher video bandwidths to match display resolutions**
 - Need 32Gbps raw bandwidth GPU to display
 - Need DP DSC support to exceed dual 5.5M pixel displays
 - Need MIPI DSC support to exceed 6.2M pixel displays
 - Need SPR support for optimized OLED bandwidth
 - Foveal transport support allow full resolution foveal images at ½ the DP or MIPI bandwidth

© 2018 MIPI Alliance, Inc.
Synaptics VR Bridge & VR DDIC Chipset Overview

VR Bridge chip features
- DP1.4 with FEC
- ~1 Line time video latency
 - Latency = lag = unresponsive HMD video
 - Low latency enables video to match USB Audio
- SST or MST video formats
 - Either PC or cellphone applications
- DSC or Synaptics SASPC compression
- Supports 1-4 DDIC per display
- D-PHYSM @ 2.5Gbps Tx
- C-PHYSM @ 2.5Gsym/sec Tx

VR DDIC chip features
- Combo C-PHYSM/D-PHYSM Rx
- DSC or Synaptics SASPC decoders
- Drive up to 4Kx3K displays
- Built-in Foveal Transport image overlay
- FIFO to adjust panel load/scan time
 - No need for buffering video in bridge
- Pixel overdrive
- Local dimming
VESA & MIPI Display standards interoperability

VR Bridge manages both DisplayPort and MIPI sides of bridge

• Provides display requirements to GPU via EDID/DisplayID
 – Video formats: Sub-Pixel Render, 420, 444, 8-bit, 10-bit
 – Compression: Compression algorithm and settings
 – Timing: allocate addition frame time for pixel settle and backlight flashing

• Configures the VR DDIC
 – Video formats: Sub-Pixel Render, 420, 444, 8-bit, 10-bit
 – Compression: Compression algorithm and settings
 – Panel scan time, settle time, backlight flash time
 – Pixel overdrive LUT
 – Local dimming settings
 – FIFO bandwidth settings
Introducing Foveal Transport

Foveal Rendering
- Renders a foveal image and a low res background image
- Both images are combined and sent at full resolution to a display
- Reduces render time, but benefits are not shared with system!

Foveal Transport
- GPU sends both images to displays *without merging them*
- Gaze point location is embedded in the display data
- DDIC scales full frame and overlays the foveal image
- Chromatic and lens distortion algorithms for each image
- **Uses ½ the data and ½ the link bandwidth!**
Why dual-mode $C-PHY^{SM}/D-PHY^{SM}$ interface is required

- Large legacy display infrastructure requires MIPI D-PHY support for initial bring-up
- MIPI C-PHY required to match DP HBR3 bandwidth and display scan timing
- MIPI DSI-2SM & DCSSM are compatible with DP 1.4 enabling GPU to display compression
- Foveal Transport is compatible with both DP and MIPI DSI-2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>No Compression</th>
<th>2:1 Compression Bridge to Display</th>
<th>2:1 Compression GPU to Display</th>
<th>3:1 Compression GPU to Display</th>
<th>Foveal Transport GPU to Display</th>
<th>2880x1920 Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIPI data/line (bytes)</td>
<td>10,710</td>
<td>6,390</td>
<td>6,390</td>
<td>4,950</td>
<td>6,390</td>
<td>per Eye</td>
</tr>
<tr>
<td>MIPI total bandwidth (Gbps)</td>
<td>15</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>per Eye</td>
</tr>
<tr>
<td>Minimum MIPI C-PHY link:</td>
<td>6-trio C-PHY</td>
<td>4-trio C-PHY</td>
<td>4-trio C-PHY</td>
<td>3-trio C-PHY</td>
<td>4-trio C-PHY</td>
<td>per Eye</td>
</tr>
<tr>
<td>Minimum MIPI D-PHY link:</td>
<td>None</td>
<td>8-lane D-PHY</td>
<td>8-lane D-PHY</td>
<td>8-lane D-PHY</td>
<td>8-lane D-PHY</td>
<td>per Eye</td>
</tr>
<tr>
<td>DP data/line (bytes)</td>
<td>17,808</td>
<td>17,808</td>
<td>8,904</td>
<td>5,936</td>
<td>8,904</td>
<td>Host I/F</td>
</tr>
<tr>
<td>DP total bandwidth (Gbps)</td>
<td>32</td>
<td>32</td>
<td>16</td>
<td>11</td>
<td>16</td>
<td>Host I/F</td>
</tr>
<tr>
<td>Minimum DP link:</td>
<td>4-lane HBR3</td>
<td>4-lane HBR3</td>
<td>4-lane HBR2</td>
<td>2-lane HBR3</td>
<td>2-lane HBR3</td>
<td>Host I/F</td>
</tr>
</tbody>
</table>

Reduced MIPI & DP PHY Lane Usage Saves Power
Mixel C-PHY℠/D-PHY℠ IP in VXR7200
XR Generic System Diagram

- **VR Flavors**
 - Smartphone
 - Standalone HMD
 - Tethered VR

- **Displays**
 - Immersive Devices
 - Holographic Devices

Mixel, Inc.

© 2018 MIPI Alliance, Inc.
XR System Challenges

• High Bandwidth Requirements
 – High display resolution
 – Faster frame rate
 – Higher sensor resolution
 – High dynamic range

• SOC Design Constraints
 – Low Power / Heat
 – Package / Minimal pin count
 – Minimize die area
 – Support multiple use cases

Power and thermal efficiency is essential for XR

MIPI Spec Attributes

• Typical for XR Market
 – High bandwidth
 – Low power
 – Low EMI

From Qualcomm Extended Reality
Mixel C-PHY℠/D-PHY℠ IP integrated in VXR7200

- Dual Mode PHY
 - D-PHY v1.2
 - C-PHY v1.1
- DSI-2 Controller
- Four Lane in D-PHY mode (10 pins)
- Three Lane in C-PHY mode (9 pins)
- Supports lane swapping and pin swapping features
- Supports de-skew calibration in D-PHY
- Supports T1 and T2 modes in C-PHY
- BIST with 100% coverage for HM

Mixel, Inc.

Synaptics
MIPI D-PHY℠ and C-PHY℠ Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>D-PHY v1.2</th>
<th>C-PHY v1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adoption</td>
<td>Long history of use, wide adoption</td>
<td>Accelerated adoption, co-exists with D-PHY</td>
</tr>
<tr>
<td>Power/Gbps</td>
<td>Efficient</td>
<td>Higher efficiency</td>
</tr>
<tr>
<td>Maximum Bandwidth @2.5Gsps</td>
<td>10Gbps for 4 Lanes (10 pins)</td>
<td>17.1Gbps for 3 Lanes (9 pins)</td>
</tr>
<tr>
<td>Minimum number of pins</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Flexibility</td>
<td>All lanes operate together.</td>
<td>Each lane can work independently.</td>
</tr>
</tbody>
</table>

Mixel, Inc.
Synaptics
Advantage of Mixel Dual PHY MIPI C-PHY℠/D-PHY℠

- Sharing of the serial interface pins
- All D-PHY blocks are re-used for the C-PHY to minimize overhead
- Combo PHY provides the flexibility to support both PHY’s using same pins with minimal overhead, while enhancing PPA

Mixel, Inc.
C-PHYSM/D-PHYSM flexibility in XR System Considerations

- System Designers need to consider
 - Total resolution requirements
 - Application targeted
 - Number of ports
 - Number of lanes per port
 - Rate per lane

The flexibility of C-PHY/D-PHY makes it ideal solution for multiple applications and use-cases

Mixel, Inc.
Silicon Results of VXR7200 MIPI Interfaces

Test Bench Setups

© 2018 MIPI Alliance, Inc.
Silicon Results of VXR7200 C-PHYSM Interface

1.5Gsps

2.5Gsps
Silicon Results of VXR7200 D-PHY℠ Interface

1.5Gbps

2.5Gbps
Mixel’s IP MIPI solution in XR

- C-PHY℠/D-PHY℠ Combo
- D-PHY℠ v1.1
- D-PHY℠ v1.2
- CSI-2℠
- DSI℠
- DSI-2℠
Summary

• Combo C-PHYSM/D-PHYSM offers a flexible and versatile solution for both system bring-up and application usage
• Mixel’s C-PHY/D-PHY link speed makes it ideal for most display applications
• The Combo IP has been integrated into many end products by tier-one SOC, Display and Sensor vendors, several in XR applications
• Mixel’s C-PHY/D-PHY are available in multiple configurations and Silicon proven in multiple nodes and foundries
• Synaptics achieved first time silicon success integrating Mixel’s C-PHY/D-PHY into VXR7200
Q&A
ADDITIONAL RESOURCES

• Demystifying MIPI C-PHY / D-PHY Subsystem - Tradeoffs, Challenges, and Adoption

• Synaptics’ New Virtual Reality Display Driver and VR Bridge Provide Ultimate User Experience for Emerging Head-Mounted Displays

• Synaptics chip paves the way for dual 2K VR headsets with 1,000 PPI

• MIPI DevCon 2016: Implementing MIPI C-PHY
 https://www.slideshare.net/MIPI-Alliance/mipi-devcon-2016-implementing-mipi-cphy

Mixel, Inc.

Synaptics