mipi[®] DEVCON

Gordon Getty Juhyun Yang Teledyne LeCroy

Troubleshooting MIPI M-PHY[®] Link and Protocol Issues MIPI ALLIANCE DEVELOPERS CONFERENCE

SEOUL

Objective

 This presentation is intended to help MIPI UniPro[®]/UFS developers to find the root cause of problems more quickly by providing tips for debugging MIPI M-PHY[®] based devices.

Welcome in Korean

MIPI ALLIANCE DEVELOPERS CONFERENCE 19 OCTOBER 2018 SEOUL

mipi[®] DEVCON

MIPI Technologies

MIPI ALLIANCE DEVELOPERS CONFERENCE

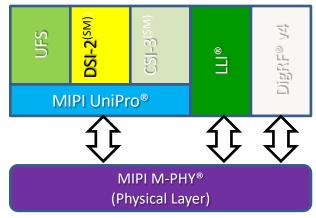
SEOUL

Physical Layer Interconnects

- High Speed Interconnects
 - MIPI M-PHY®
 - MIPI UniPro[®]/UniPort
 - Camera (Unipro), Storage (UniPro), Modem, Interchip
 - IVIIPI D-PHY(SIVI)
 - MIPI C-PHY^(SM)
 - Camera, Display
 - MIPI A-PHY^(SM)
 - Automotive applications
- Low Speed Interconnects
 - SLIMBus®
 - Audio
 - SoundWire[®]
 - Audio
 - CMOS I/O
 - Chip to Chip

mipi[®] DEVCON

MIPI M-PHY®


MIPI ALLIANCE DEVELOPERS CONFERENCE

SEOUL

MIPI M-PHY® Protocols

- M-PHY[®] protocols are used based on interface used in each application.
- Multiple protocols can be used in a single device.

Why MIPI M-PHY[®]?

From the MIPI M-PHY[®] Specification V4.0:

"Mobile devices face increasing bandwidth demands for each of its functions as well as an increase of the number of functions integrated into the system. This requires wide bandwidth, low-pin count (serial) and highly power-efficient (network) interfaces that provides sufficient flexibility to be attractive for multiple applications, but which can also be covered with one physical layer technology. MIPI M-PHY[®] is the successor of MIPI D-PHY^(SM), requiring less pins and providing more bandwidth per pin (pair) with improved power efficiency."

MIPI M-PHY® Data Rates

- LS-MODE
 - Gears 0-7
- HS-MODE
 - Gears 1-4
- All Modules (Host and Device) must support LS
 - Default for PWM is Gear1 3-9Mbs
 - Each Gear supports 2x higher speeds
 - one GEAR below the default speed range (PWM-G0)
- HS-Mode is Optional
 - HS-MODE includes a default GEAR (HS-G1)
 - Optional High Speed GEARs (HS-G2, HS-G3, HS-G4) at incremental 2x higher rates
 - Each GEAR includes two data rates for EMI mitigation reasons
 - E.g. HS-G1 supports 1.25 Gbps and 1.45 Gbps
 - These two data rates are known as A & B
- Support for a LS or a HS GEAR requires support for all GEARs below

MIPI ALLIANCE DEVELOPERS CONFERENCE 19 OCTOBER 2018 **SEOUL**

MIPI M-PHY[®] HS Gear 4

• Doubling of the Data Rate from HS-Gear3 to HS-Gear4

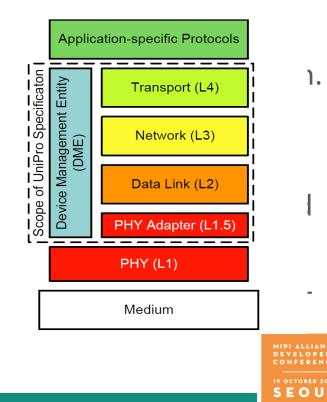
RATE A-series (Mbps)	RATE B-series ¹ (Mbps)	High-Speed GEARs
1248	1457.6	HS-G1 (A/B)
2496	2915.2	HS-G2 (A/B)
4992	5830.4	HS-G3 (A/B)
9984	11660.8	HS-G4 (A/B)

Table 11 HS-BURST: RATE Series and GEARs

 The B-series rates shown are not integer multiples of common reference frequencies 19.20 MHz or 26.00 MHz, but are within the tolerance range of 2000 ppm.

mipi[®] DEVCON

MIPI UniPro®


MIPI ALLIANCE DEVELOPERS CONFERENCE

SEOUL

MIPI UniPro®

- MIPI specification to the define protoc between Devices that implement the
- This includes definitions of data struct Frames, used to convey information a
- Flow control, error handling, power ar connection services are also defined in
- UniPro version 1.61, the use of M-PHY chip interconnections

MIPI UniPro[®] L1.5 Protocol

- The L1.5 for MIPI M-PHY[®] automates a significant part of the required steps used for Power Modes control, utilizing an L1.5-to-L1.5 communication protocol known as PACP (PHY Adapter Control Protocol).
- PDUs ("PACP frames") generated by L1.5 are multiplexed with the symbol stream received from L2 and can be recognized by a unique header pattern.

MIPI UniPro[®] L1.5 Power States and Power Modes

- The difference between Power States and Power Modes are as follows:
- An Application can set only a Power Mode, but cannot set a Power State
- An Application can get a Power Mode and get a Power State
 - the gettable value of a Power Mode simply reflects the value that was set
 - the gettable value of a Power State may change spontaneously when in FastAuto_Mode or SlowAuto_Mode

MIPI UniPro® PACP Capability Exchange

832	Sublink0	5.111370	PACP_CAP_EXT1_ind		PWM-G1 x1
833	Sublink0	5.111398	PACP_CAP_ind		PWM-G1 x1
840	Sublink1	5.111968		PACP_CAP_EXT1_ind	PWM-G1 x1
842	Sublink1	5.112047		PACP_CAP_ind	PWM-G1 x1

0	ESC_PA	EscPa	rm_PA					
	MK1		01					
2	PAG	CP_FunctionId						
		0x0309						
4	THibern8	TMinActivate	Status					
	0x01	0x6	0xF					
6	TAdvHibern8	TAdvMinActivate	RxAdvGranularity					
	0x01	0xA	0x4					
8	MinRxTrailingClocks	RxPwmBurst	ClosureLength					
	0x2E	O	0x1F					
10	RxLsPrepareLength	RxPwmG6G	7SyncLength					
	0x0D	0×	(00					
12	RxHsG1PrepareLength	RxHsG1S	yncLength					
	OxOF	0×	48					
14	RxHsG2PrepareLength	RxHsG2S	yncLength					
	0x0F	O	49					
16	RxHsG3PrepareLength	RxHsG3S	yncLength					
	OxOF	0x	4A					
18	Res	served [31:16]						
		Oxffff						
20	Re	served [15:0]						
		Oxffff						
22	C	CITT CRC-16						
		0xDB44						

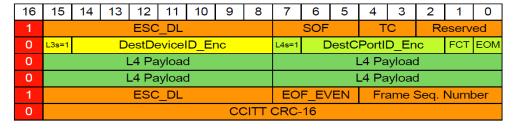
MIPI ALLIANCE DEVELOPERS CONFERENCE 19 OCTOBER 2018 SEOUL

© 2018 MIPI Alliance, Inc.

MIPI UniPro[®] Layer 1.5 Example – PACP_PWR_REQ

Used for power mode changes

FRAME 696	3.947_976_272 s	0.000_203_592 s	LS	1	0	PACP	PACP_PWR_REQ					
FRAME 706	3.948_213_046 s	0.000_219_178 s	LS	1	0			PACP	PACP_PWR_CNF			
			0x01									
	PACP_FunctionId		0x010E : PAC	P_PWR_	REQ							
	DevId		0x00									
~	Flags		0x36	0x36								
	Scrambling re	quest	0x0 : Not req	uested								
	UserDataVali	d	0x1:Valid									
	HS Series		0x1 : Series B	}								
	LINE-RESET I	0x0 : Not req	uested									
	PA_TxTermin	ation	0x1:Enable									
	PA_RxTermin	PA_RxTermination			0x1:Enable							
	- TxMode		0x1 : Fast_Mode									
	TxLane		0x1:1Lane									
	TxGear		0x1									
	RxMode		0x1:Fast_M	0x1:Fast_Mode								
	RxLane		0x1:1Lane									
-	RxGear		0x1									
	- PAPowerModeUs	erData	0x00000000	0000000	00000	000 FFFFF	FFF FFFFFFFF FFFFF	FFF				
	- CRC-16		0x7A4E									


MIPI ALLIANCE DEVELOPERS CONFERENCE 19 OCTOBER 2018 **SEOUL**

MIPI UniPro[®] Layers

- L2 The Data Link Layer provides reliable Links between a transmitter and a directly attached receiver
- L3 Network Layer is to allow data to be routed to the proper destination in a networked environment.
- L4 Transport Layer mechanisms allow a single physical Packet stream between two Devices to support multiple, independent, logical Packet streams or "Connections".

	Appli	cation-specific Protocols
ficaton	Scope of UniPro Specificaton Device Management Entity (DME)	Transport (L4)
ro Speci		Network (L3)
		Data Link (L2)
Scop		PHY Adapter (L1.5)
		PHY (L1)
		Medium

E O U

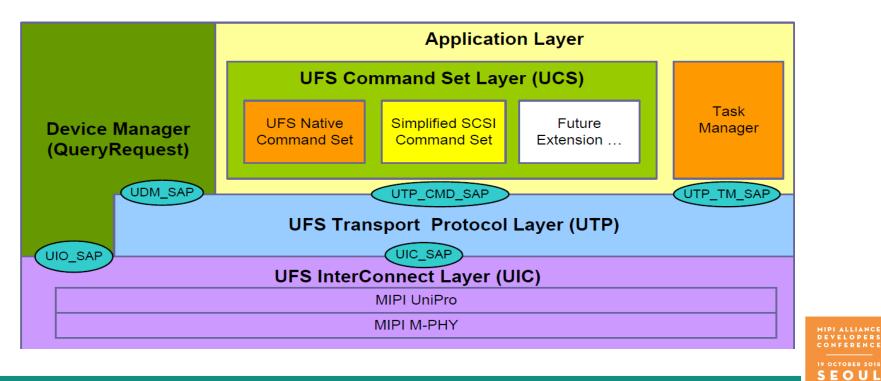
mipi[®] DEVCON

Universal Flash Storage (UFS) JEDEC

MIPI ALLIANCE DEVELOPERS CONFERENCE

SEOUL

UFS – Universal Flash Storage


- Universal Flash Storage JEDEC Standard JESD220B
- Universal Flash Storage (UFS) is a simple, high performance, mass storage device with a serial interface.
- It is primarily used in mobile systems, between host processing and mass storage memory devices.
- MIPI M-PHY[®] and MIPI UniPro[®] make up the interconnect for UFS
- UFS is architected on SCSI SAM
- UFS uses the command layers from SCSI SPC and SBC

Universal Flash Storage (UFS) Version 2.0 JESD220B (Privates of JESD220A, June 2012) SEPTEMBER 2013	JEDEC STANDARD	
(Bernise of RED220A, June 2012) SEPTEMBER 2013		
	EPTEMBER 2013 EDEC SOLID STATE TECHNOLOGY ASSOCIATION	

UFS Architecture

© 2018 MIPI Alliance, Inc.

UFS Physical Layer Requirements

- UFS interface can support multiple lanes.
- Each lane consists of a differential pair.
- Basic configuration is based on one transmit lane and one receive lane.
- Optionally, a UFS device may support two downstream lanes and two upstream lanes. An equal number of downstream and upstream lanes shall be provided in each link.
 - Links must be symmetrical

21

Application Specific Protocol - UFS

- The application layer consists of the UFS Command Set layer (UCS), the device manager and the Task Manager
- The UCS will handle the normal commands like read, write, and so on.
- UFS may support multiple command sets.
- UFS is designed to be protocol agnostic. This version UFS standard uses SCSI as the baseline protocol layer.
- A simplified SCSI command set was selected for UFS.
- UFS Native command set can be supported when it is needed to extend the UFS functionalities.
- The Task Manager handles commands meant for command queue control.
- The Device Manager will provide device level control like Query Request and lower level link-layer control.

In test	Index	Direction	Time	Host0	Device1	Power Mode
	4	Sublink0	16.65201	QUERY REQUEST (READ FLAG)		PWM-G1 x1
	5	Sublink1	16.65222		QUERY RESPONSE (READ FLAG)	PWM-G1 x1
	6	Sublink0	16.70338	QUERY REQUEST (READ FLAG)		PWM-G1 x1
	7	Sublink1	16.70358		QUERY RESPONSE (READ FLAG)	PWM-G1 x1
	8	Sublink0	16.70470	REQUEST SENSE		PWM-G1 x1
	9	Sublink1	16.70490		REQUEST SENSE RESPONSE (DATA IN)	PWM-G1 x1
	10	Sublink1	16.70498		RESPONSE	PWM-G1 x1
	11	Sublink0	16.70643	REQUEST SENSE		PWM-G1 x1
	12	Sublink1	16.70663		REQUEST SENSE RESPONSE (DATA IN)	PWM-G1 x1
	13	Sublink1	16.70672		RESPONSE	PWM-G1 x1
	14	Sublink0	16.91731	QUERY REQUEST (WRITE ATTRIBUTE)		PWM-G1 x1
	15	Sublink1	16.91779		QUERY RESPONSE (WRITE ATTRIBUTE)	PWM-G1 x1
	16	Sublink0	17.64016	WRITE (16)		HS-G3B x1
	17	Sublink1	17.64021		READY TO TRANSFER	HS-G3B x1
	18	Sublink0	17.64022	WRITE (16) DATA (DATA OUT)		HS-G3B x1
	19	Sublink1	17.64049		RESPONSE	HS-G3B x1
	20	Sublink0	17.64089	READ (16)		HS-G3B x1
	21	Sublink1	17.64095		READ (16) DATA (DATA IN)	HS-G3B x1
	22	Sublink1	17.64107		RESPONSE	HS-G3B x1
	23	Sublink0	17.64153	WRITE (16)		HS-G3B x1
	24	Sublink1	17.64158		READY TO TRANSFER	HS-G3B x1
	25	Sublink0	17.64159	WRITE (16) DATA (DATA OUT)		HS-G3B x1

SCSI Read Command

		last et l	-			Packet D	lecode					- ↓ ×
In test	Index	Direction	Time	Host0	Device1	Packet: 20), Host0, READ (16)				8	16 32
	4	Sublink0	16.65201	QUERY REQUEST (READ FLAG)								
	5	Sublink1	16.65222		QUERY F	Byte	+	+0		+1		Î
	6	Sublink0	16.70338	QUERY REQUEST (READ FLAG)		0	HD DD Transaction Code		Re R W.	Peropuo		ATTR
	7	Sublink1	16.70358		QUERY F	U	0x0 0x0	0x1	0x0 0x1 0x0		0x0	0x0
	8	Sublink0	16.70470	REQUEST SENSE		2	<u>*</u> *	UN		Task Tag	UNU /	
	9	Sublink1	16.70490		REQUES		0)	x00		0x00		
	10	Sublink1	16.70498		RESPON	4	IID	Command Set Type	R	eserved (byte	e 5)	
	11	Sublink0	16.70643	REQUEST SENSE			0x0	0x0	Ox00			
	12	Sublink1	16.70663		REQUES	6	Reserved (byte 6)		R	eserved (byte	e 7)	
	13	Sublink1	16.70672		RESPON		0x00		Į	0x00		
	14	Sublink0	16.91731	QUERY REQUEST (WRITE ATTRIBUTE)		8	EHS Length 0x00		R	eserved (byte	e 9)	
	15	Sublink1	16.91779		QUERY F	10	<u>0</u>		l cont l consth	0x00		
	16	Sublink0	17.64016	WRITE (16)		10		-	gment Length 0x0000			
	17	Sublink1	17.64021		READY T	12		Expected Data Tra		:16]		
	18	Sublink0	17.64022	WRITE (16) DATA (DATA OUT)					0000			
	19	Sublink1	17.64049		RESPON	14		Expected Data Tra	nsfer Length [1	5:0]		
	20	Sublink0	17.64089	READ (16)				0x1	000			
	21	Sublink1	17.64095		READ (1)	16		ion Code	RDPROTECT	DPO FUA		
	22	Sublink1	17.64107		RESPON		0		0x0	0x0 0x0	0x0	0x0 0x0
	23	Sublink0	17.64153	WRITE (16)		10		HS-G3B x1	ATTIMUECE 163.4	01		
	24	Sublink1	17.64158		READY TO	D TRANS	FER	HS-G3B x1				MIPI ALLIA DEVELOPI
	25	Sublink0	17.64159	WRITE (16) DATA (DATA OUT)				HS-G3B x1				CONFEREN

MIPI.ORG/DEVCON | 2018

SEOUL

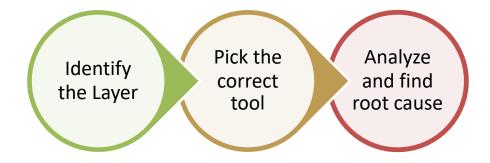
SCSI Write Command

In test	Index	Direction	Time	Host0	Device1	Packet De	code					▼ □ 3	×
	0	Sublink0	4.186909	NOP OUT		Packet: 16, Host0, WRITE (16)			8 16 32		32		
	1	Sublink1	4.187109		NOP IN	Byte		+0			+1		
	2	Sublink0	4.188010	QUERY REQUEST (SET FLAG)		byte					1		
	3	Sublink1	4.188210		QUERY R	0	H D 1	Transaction	Code	R R W R	ese CP /	ATTR	
	4	Sublink0	4.189164	QUERY REQUEST (READ FLAG)			0 0	0x1		0 0 0	0x0 0	0x0	
	5	Sublink1	4.189364		QUERY R	2					Task Tag		
	6	Sublink0	4.240711	QUERY REQUEST (READ FLAG)		4	IID	0x00	mand)x00 ed (byte 5)		
	7	Sublink1	4.240910		QUERY R	7	0x0)x0		x00		
	8	Sublink0	4.242537	REQUEST SENSE		6	Rese	erved (byte	6)	Reserve	ed (byte 7)		
	9	Sublink1	4.242737		REQUES			0x00		÷)x00		
	10	Sublink1	4.242817		RESPON	8	E	HS Length			ed (byte 9)		
	11	Sublink0	4.244950	REQUEST SENSE		10		0x00	ta Cana	nent Length)x00		
	12	Sublink1	4.245155		REQUES			Da		0000			
	13	Sublink1	4.245235		RESPON	12		Expected D		nsfer Length [31:16]		
	14	Sublink0	4.457277	QUERY REQUEST (WRITE ATTRIBUTE)				·	0x0	0000			
	15	Sublink1	4.457761		QUERY R	14	WINITE AI	Expected (Data Tra	ansfer Length	[15:0]		
	16	Sublink0	5.176648	WRITE (16)					HS	S-G3B x1		MIPI ALL DEVELC CONFER	OPE

19 OCTOBER 2018 SEOUL

© 2018 MIPI Alliance, Inc.

mipi[®] DEVCON


Debugging MIPI M-PHY®

MIPI ALLIANCE DEVELOPERS CONFERENCE

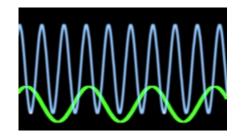
SEOUL

Debug process for Serial Protocols

© 2018 MIPI Alliance, Inc.

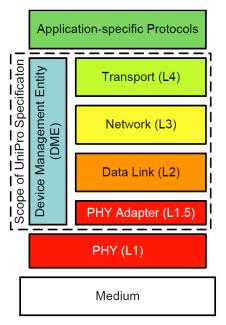
Debugging MIPI M-PHY®

- Typically MIPI M-PHY[®] production systems are chip to chip, no connector
- Development systems may have SMA connections between devices
- First challenge is to access link
- Probing Type:
 - SMA
 - Multi Lead
 - Midbus
- Check electrical first before debugging protocol problem



Using the correct tool

- Is problem related to Signal Integrity?
 - Are devices physically connected?
 - Are both devices providing MIPI M-PHY[®] compliant signaling?
 - Use an Oscilloscope to verify
- Is problem related to Connectivity
 - Is a link established between the 2 devices?
 - Is the data rate as expected?
 - Can software see the devices
 - for UFS, can the storage be seen?
 - Use a Protocol analyzer to verify

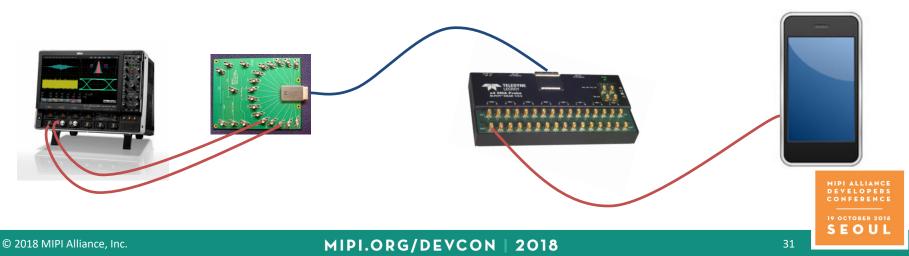

SCSI		Request Sense
	CTRL	AFC
	UTP	DATA IN
CTRL		AFC
CTRL		AFC
	UTP	RESPONSE
CTRL		AFC
CTRL		AFC
SCSI		Read (10)

Which Layer is causing the problem?

- Same principle applies regardless of MIPI M-PHY[®] upper layer protocol
- Identify the layer
 - Performance?
 - Reliability?
 - Errors?

Protocol Analyzer sees nothing?

- Is there a signal present? •
 - Connect the analyzer probe output to an Oscilloscope to verify.



Protocol Analyzer sees nothing?

- Is there a signal present?
 - Connect the analyzer probe output to an Oscilloscope to verify.

Protocol Issues – Look at upper layers

Index	Direction	Time	Host0	Device1	Power Mode	Error	MIBAttribute	Mibvalue
251	Sublink1	16.42751		TRG_UPR2	PWM-G1 x1	NONE		
252	Sublink1	16.42751		TRG_UPR2	PWM-G1 x1	NONE		
253	Sublink0	16.42751	Filler		PWM-G1 x1	NONE		
254	Sublink1	16.42752		TRG_UPR2	PWM-G1 x1	NONE		
255	Sublink0	16.42752	TRG_UPR1		PWM-G1 x1	NONE		
256	Sublink1	16.42752		TRG_UPR2	PWM-G1 x1	NONE		
257	Sublink0	16.42752	Filler		PWM-G1 x1	NONE		
258	Sublink1	16.42752		TRG_UPR2	PWM-G1 x1	NONE		
259	Sublink1	16.42752		TRG_UPR2	PWM-G1 x1	NONE		
260	Sublink0	16.42752	TRG_UPR1		PWM-G1 x1	NONE		
261	Sublink1	16.42753		TRG_UPR2	PWM-G1 x1	NONE		
262	Sublink0	16.42753	Filler		PWM-G1 x1	NONE		
263	Sublink1	16.42753		TRG_UPR2	PWM-G1 x1	NONE		
264	Sublink1	16.42753		TRG_UPR2	PWM-G1 x1	NONE		
265	Sublink0	16.42753	TRG_UPR1		PWM-G1 x1	NONE		
266	Sublink1	16.42753		TRG_UPR2	PWM-G1 x1	NONE		
267	Sublink0	16.42753	Filler		PWM-G1 x1	NONE		
268	Sublink1	16.42753		TRG_UPR2	PWM-G1 x1	NONE		
269	Sublink0	16.42754	TRG_UPR1		PWM-G1 x1	NONE		
270	Sublink1	16.42754		TRG_UPR2	PWM-G1 x1	NONE		
271	Sublink1	16.42754		TRG_UPR2	PWM-G1 x1	NONE		
272	Sublink0	16.42754	Filler		PWM-G1 x1	NONE		

In test	Index	Direction	Time	Host0	Device1	Power Mode
	4	Sublink0	16.65201	QUERY REQUEST (READ FLAG)		PWM-G1 x1
	5	Sublink1	16.65222		QUERY RESPONSE (READ FLAG)	PWM-G1 x1
	6	Sublink0	16.70338	QUERY REQUEST (READ FLAG)		PWM-G1 x1
	7	Sublink1	16.70358		QUERY RESPONSE (READ FLAG)	PWM-G1 x1
	8	Sublink0	16.70470	REQUEST SENSE		PWM-G1 x1
	9	Sublink1	16.70490		REQUEST SENSE RESPONSE (DATA IN)	PWM-G1 x1
	10	Sublink1	16.70498		RESPONSE	PWM-G1 x1
	11	Sublink0	16.70643	REQUEST SENSE		PWM-G1 x1
	12	Sublink1	16.70663		REQUEST SENSE RESPONSE (DATA IN)	PWM-G1 x1
	13	Sublink1	16.70672		RESPONSE	PWM-G1 x1
	14	Sublink0	16.91731	QUERY REQUEST (WRITE ATTRIBUTE)		PWM-G1 x1
	15	Sublink1	16.91779		QUERY RESPONSE (WRITE ATTRIBUTE)	PWM-G1 x1
	16	Sublink0	17.64016	WRITE (16)		HS-G3B x1
	17	Sublink1	17.64021		READY TO TRANSFER	HS-G3B x1
	18	Sublink0	17.64022	WRITE (16) DATA (DATA OUT)		HS-G3B x1
	19	Sublink1	17.64049		RESPONSE	HS-G3B x1
	20	Sublink0	17.64089	READ (16)		HS-G3B x1
	21	Sublink1	17.64095		READ (16) DATA (DATA IN)	HS-G3B x1
	22	Sublink1	17.64107		RESPONSE	HS-G3B x1
	23	Sublink0	17.64153	WRITE (16)		HS-G3B x1
	24	Sublink1	17.64158		READY TO TRANSFER	HS-G3B x1
	25	Sublink0	17.64159	WRITE (16) DATA (DATA OUT)		HS-G3B x1

© 2018 MIPI Alliance, Inc.

MIPI UniPro[®] - Link Startup Sequence

 The Link Startup Sequence is a multi-phase handshake, which exchanges MIPI UniPro[®] trigger events to establish initial Link communication, in both directions, between two directly attached MIPI UniPro[®] Devices.

Link Startup Sequence

Table 13 Link Startup Sequence

Phase	PA Transmitter	PA Receiver					
0	Continue to send TRG_UPR0 (all available Lanes)	Wait for TRG_UPR0 reception. Lane discovery (see <i>Section 5.7.8.2</i>)					
0b	Send two additional TRG_UPR0 (all available Lanes)	Ignore all data					
	Then proceed with phase 1						
1	Continue to send TRG_UPR1	Wait for TRG_UPR1 reception on all Lanes					
		Re-align Lane numbering (Section 5.7.8.3)					
2	Send two additional TRG_UPR1	Ignore all data					
	Then proceed with phase 3						
3	Continue to send TRG_UPR2 on all Lanes	Wait for TRG_UPR2 reception on PHY RX Data Lane 0 • TRG_UPR2 (-> advance to phase 4) • TRG_UPR1 (-> ignore) • Others (-> ignore)					
4	Send two additional TRG_UPR2 on all Lanes Then proceed with Phase 5	Ignore all data					
5	Transfer Capabilities	Receive Capabilities and apply down grading					
	Report to the DME using PA_LM_LINKSTARTUP.cnf_L that the Link Startup Sequence succeeded. Exit the Link Startup Sequence and enter SlowAuto_Mode.						

MIPI ALLIANCE DEVELOPERS CONFERENCE 19 OCTOBER 2018 **SEOUL**

© 2018 MIPI Alliance, Inc.

MIPI UniPro[®] - Link Startup Sequence

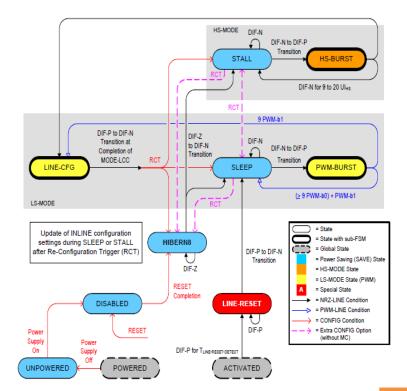
• Do both sides go through the Link Startup Sequence?

8164	Sublink0	58.23605		TRG_UPR1	PWM-G1 x1	NONE	MIPI A DEVEI
8163	Sublink0	58.23605		TRG_UPR1	PWM-G1 x1	NONE	-
8162	Sublink0	58.23604		TRG_UPR1	PWM-G1 x1	NONE	
8161	Sublink0	58.23604		TRG_UPR0	PWM-G1 x1	NONE	
8160	Sublink0	58.23604		TRG_UPR0	PWM-G1 x1	NONE	
8159	Sublink0	58.23604		TRG_UPR0	PWM-G1 x1	NONE	
8152	Sublink1	58.23537	TRG_UPR0		PWM-G1 x1	NONE	
8144	Sublink0	58.23446		TRG_UPR0	PWM-G1 x1	NONE	
8137	Sublink1	58.23337	TRG_UPR0		PWM-G1 x1	NONE	
8129	Sublink0	58.23289		TRG_UPR0	PWM-G1 x1	NONE	
8123	Sublink1	58.23130	TRG_UPR0		PWM-G1 x1	NONE	
8119	Sublink0	58.23052		Line-Reset	PWM-G1 x1	NONE	
8115	Sublink1	58.22923	TRG_UPR0		PWM-G1 x1	NONE	
8107	Sublink1	58.22716	TRG_UPR0		PWM-G1 x1	NONE	
8104	Sublink1	57.83088	Line-Reset		PWM-G1 x1	NONE	

ONFERENCE

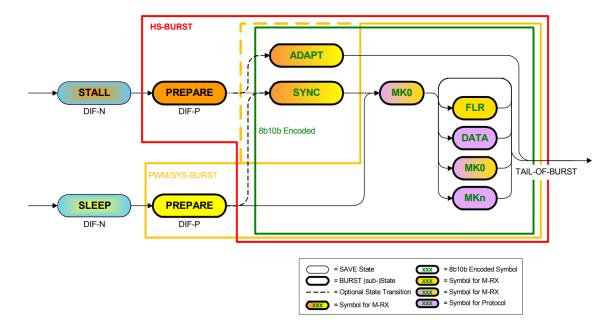
MIPI UniPro[®] – Link Startup Sequence

• Does the Link Startup Sequence Complete?


8925 Sublink1 58.23783 TRG_UPR2 PWM-G1 x1 NONE 8926 Sublink1 58.23783 TRG_UPR2 PWM-G1 x1 NONE 8927 Sublink1 58.23784 TRG_UPR2 PWM-G1 x1 NONE 8927 Sublink1 58.23784 TRG_UPR2 PWM-G1 x1 NONE 8928 Sublink1 58.23784 TRG_UPR2 PWM-G1 x1 NONE 8929 Sublink1 58.23785 TRG_UPR2 PWM-G1 x1 NONE 8930 Sublink1 58.23785 TRG_UPR2 PWM-G1 x1 NONE 8930 Sublink0 58.23807 TRG_UPR2 PWM-G1 x1 NONE 8939 Sublink0 58.23807 TRG_UPR2 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8940 Sublink0 58.23807 TRG_UPR2 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8947 Sublink1 58.2387 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8949 Sublink1 58.2387							
8927 Sublink1 58.23784 TRG_UPR2 PWM-G1 x1 NONE 8928 Sublink1 58.23784 TRG_UPR2 PWM-G1 x1 NONE 8929 Sublink1 58.23784 TRG_UPR2 PWM-G1 x1 NONE 8929 Sublink1 58.23784 TRG_UPR2 PWM-G1 x1 NONE 8930 Sublink1 58.23785 TRG_UPR2 PWM-G1 x1 NONE 8930 Sublink0 58.23875 TRG_UPR2 PWM-G1 x1 NONE 8930 Sublink0 58.23807 TRG_UPR2 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8940 Sublink0 58.23807 TRG_UPR2 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8947 Sublink1 58.23867 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8949 Sublink1 58.23875 PACP_CAP_ind PWM-G1 x1 NONE 8960 Sublink0 58.23948 AFC TC1 PWM-G1 x1 NONE 8961 Sublink0 58.23948	8925	Sublink1	58.23783	TRG_UPR2		PWM-G1 x1	NONE
8928 Sublink1 58.23784 TRG_UPR2 PWM-G1 x1 NONE 8929 Sublink1 58.23784 TRG_UPR2 PWM-G1 x1 NONE 8930 Sublink1 58.23785 TRG_UPR2 PWM-G1 x1 NONE 8930 Sublink0 58.23785 TRG_UPR2 PWM-G1 x1 NONE 8939 Sublink0 58.23807 TRG_UPR2 PWM-G1 x1 NONE 8939 Sublink0 58.23807 TRG_UPR2 PWM-G1 x1 NONE 8940 Sublink0 58.23807 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8947 Sublink1 58.23867 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8949 Sublink1 58.23875 PACP_CAP_ind PWM-G1 x1 NONE 8960 Sublink0 58.23948 PACP_CAP_ind PWM-G1 x1 NONE 8961 Sublink0 58.23948 AFC TC1 PWM-G1 x1 NONE 8970 Sublink1 58.24024 AFC TC1 PWM-G1 x1	8926	Sublink1	58.23783	TRG_UPR2		PWM-G1 x1	NONE
8929 Sublink1 58.23784 TRG_UPR2 PWM-G1 x1 NONE 8930 Sublink1 58.23785 TRG_UPR2 PWM-G1 x1 NONE 8939 Sublink0 58.23807 TRG_UPR2 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8939 Sublink0 58.23807 TRG_UPR2 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8940 Sublink0 58.23807 PACP_CAP_EXT1_ind PACP_CAP_ind PWM-G1 x1 NONE 8947 Sublink1 58.23875 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8949 Sublink1 58.23875 PACP_CAP_ind PWM-G1 x1 NONE 8960 Sublink0 58.23948 PACP_CAP_ind PWM-G1 x1 NONE 8961 Sublink0 58.23948 AFC TC1 PWM-G1 x1 NONE 8970 Sublink1 58.24024 AFC TC1 PWM-G1 x1 NONE	8927	Sublink1	58.23784	TRG_UPR2		PWM-G1 x1	NONE
8930 Sublink1 58.23785 TRG_UPR2 PWM-G1 x1 NONE 8939 Sublink0 58.23807 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8940 Sublink0 58.23807 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8940 Sublink0 58.23810 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8947 Sublink1 58.23867 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8949 Sublink1 58.23867 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8949 Sublink1 58.23875 PACP_CAP_ind PWM-G1 x1 NONE 8960 Sublink0 58.23948 PACP_CAP_ind PWM-G1 x1 NONE 8961 Sublink0 58.23948 AFC TC0 PWM-G1 x1 NONE 8970 Sublink1 58.24024 AFC TC1 PWM-G1 x1 NONE	8928	Sublink1	58.23784	TRG_UPR2		PWM-G1 x1	NONE
8939 Sublink0 58.23807 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8940 Sublink0 58.23810 PACP_CAP_ind PWM-G1 x1 NONE 8947 Sublink1 58.23807 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8947 Sublink1 58.23875 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8949 Sublink1 58.23875 PACP_CAP_ind PWM-G1 x1 NONE 8960 Sublink0 58.23948 PACP_CAP_ind PWM-G1 x1 NONE 8961 Sublink0 58.23948 AFC TC1 PWM-G1 x1 NONE 8970 Sublink1 58.24024 AFC TC1 PWM-G1 x1 NONE	8929	Sublink1	58.23784	TRG_UPR2		PWM-G1 x1	NONE
8940 Sublink0 58.23810 PACP_CAP_ind PWM-G1 x1 NONE 8947 Sublink1 58.23867 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8949 Sublink1 58.23875 PACP_CAP_ind PWM-G1 x1 NONE 8960 Sublink0 58.23948 PACP_CAP_ind PWM-G1 x1 NONE 8961 Sublink0 58.23948 AFC TC1 PWM-G1 x1 NONE 8961 Sublink1 58.23948 AFC TC0 PWM-G1 x1 NONE 8970 Sublink1 58.24024 AFC TC1 PWM-G1 x1 NONE	8930	Sublink1	58.23785	TRG_UPR2		PWM-G1 x1	NONE
8947 Sublink1 58.23867 PACP_CAP_EXT1_ind PWM-G1 x1 NONE 8949 Sublink1 58.23875 PACP_CAP_ind PWM-G1 x1 NONE 8960 Sublink0 58.23948 PACP_CAP_ind AFC TC1 PWM-G1 x1 NONE 8961 Sublink0 58.23948 AFC TC0 PWM-G1 x1 NONE 8970 Sublink1 58.24024 AFC TC1 PWM-G1 x1 NONE	8939	Sublink0	58.23807		PACP_CAP_EXT1_ind	PWM-G1 x1	NONE
8949 Sublink1 58.23875 PACP_CAP_ind PWM-G1 x1 NONE 8960 Sublink0 58.23948 AFC TC1 PWM-G1 x1 NONE 8961 Sublink0 58.23948 AFC TC0 PWM-G1 x1 NONE 8970 Sublink1 58.24024 AFC TC1 PWM-G1 x1 NONE	8940	Sublink0	58.23810		PACP_CAP_ind	PWM-G1 x1	NONE
8960 Sublink0 58.23948 AFC TC1 PWM-G1 x1 NONE 8961 Sublink0 58.23948 AFC TC0 PWM-G1 x1 NONE 8970 Sublink1 58.24024 AFC TC1 PWM-G1 x1 NONE	8947	Sublink1	58.23867	PACP_CAP_EXT1_ind		PWM-G1 x1	NONE
8961 Sublink0 58.23948 AFC TC0 PWM-G1 x1 NONE 8970 Sublink1 58.24024 AFC TC1 PWM-G1 x1 NONE	8949	Sublink1	58.23875	PACP_CAP_ind		PWM-G1 x1	NONE
8970 Sublink1 58.24024 AFC TC1 PWM-G1 x1 NONE	8960	Sublink0	58.23948		AFC TC1	PWM-G1 x1	NONE
	8961	Sublink0	58.23948		AFC TC0	PWM-G1 x1	NONE
8972 Sublink1 58.24029 AFC TC0 PWM-G1 x1 NONE	8970	Sublink1	58.24024	AFC TC1		PWM-G1 x1	NONE
	8972	Sublink1	58.24029	AFC TC0		PWM-G1 x1	NONE

State Machine

- Two operating modes,
 - HS-MODE
 - LS-MODE
- A data transmission (BURST) state and a MODE-specific power saving (SAVE) state
- STALL is the SAVE state of HS-MODE
- SLEEP is the SAVE state of LS-MODE
 - HS-MODE: STALL, HS-BURST
 - LS-MODE (Type-I MODULE): SLEEP, PWM-BURST, LINE-CFG
 - LS-MODE (Type-II MODULE): SLEEP, SYS-BURST



MIPI ALLIANCE DEVELOPERS CONFERENCE 19 OCTOBER 2018 SEOUL

Bursts

• HSG4 includes ADAPT state

MIPI ALLIANCE DEVELOPERS CONFERENCE 19 OCTOBER 2018 **SEOUL**

© 2018 MIPI Alliance, Inc.

Power Mode Change

- Are the Power Mode Changes happening as expected?
- Did the Link Startup Sequence Complete?
- Trigger on PACP_PWR_REQ to track Power mode changes

Index	Direction Time	Host	Device	Power Mode	Error	RxGear	RxLane	RxMode	TxGear	TxLane	TxMode
1150	Sublink1 6.169753	PACP_PWR_req		PWM-G1 x1	NONE	0x1	0x1	FastAuto_Mode (0x4)	0x1	0x1	FastAuto_Mode (0x4)
1156	Sublink0 6.170045		PACP_PWR_cnf	PWM-G1 x1	NONE	0x1	0x1	FastAuto_Mode (0x4)	0x1	0x1	FastAuto_Mode (0x4)

39

UFS Initialization

 MIPI UniPro[®] Link Startup Sequence must complete before any UFS traffic can commence.

In test	Index	Direction	Time	Host	Device	Power Mode
	0	Sublink1	5.316020794000 s		NOP OUT	PWM-G1 x1
	1	Sublink0	5.316397266000 s	NOP IN		PWM-G1 x1
	2	Sublink1	5.383056086000 s		QUERY REQUEST (SET FLAG)	PWM-G1 x1
	3	Sublink0	5.383427540000 s	QUERY RESPONSE (SET FLAG)		PWM-G1 x1
	4	Sublink1	5.449256130000 s		QUERY REQUEST (READ FLAG)	PWM-G1 x1
	5	Sublink0	5.449674915000 s	QUERY RESPONSE (READ FLAG)		PWM-G1 x1

40

Summary

- Although device is a UFS controller you are dependent on MIPI UniPro[®] Link Startup Sequence
- Knowing this process will help you understand how to bring up the device
- Identify Lower Layer issues first, otherwise nothing else will work

41

mipi[®] DEVCON

Q&A

MIPI ALLIANCE DEVELOPERS CONFERENCE

SEOUL

ADDITIONAL RESOURCES

- MIPI M-PHY[®] Specification v4.0
- MIPI MIPI UniPro[®] Specification v1.8
- JEDEC Spec JESD220C (UFS)

mipi DEVCON THANK YOU

MIPI ALLIANCE DEVELOPERS CONFERENCE

SEOUL