mipi[®] DEVCON

Jongshin Shin VP, Samsung Electronics Co.

MIPI ALLIANCE DEVELOPERS CONFERENCE

SEOUL

MIPI.ORG/DEVCON

MOBILE TECHNOLOGY FOR THE SMART WORLD

Jongshin Shin, Samsung Electronics

NEXT STEP FOR THE SMART WORLD

AI / Deep Learning

5G Network

Smart Mobility

SAMSUNG

Machine Intelligence on Various Devices

High Speed, Low Latency, Massive Number of Connections Autonomous Driving Cars, Drones and more

1,000,000 GFLOPS

Human-like Processing with NPU

Human Brain

INTELLIGENCE ON THE DEVICES

AI/Deep Learning for Wide Industries

Realized by Semiconductor Technologies

SAMSUNG

5G NETWORK

The Mass Connected Era

Inspires creativity in all connected dots

Enhanced Mobile Broadband Ultra Reliable & Low Latency Massive Machine Type Communication

2018201920203GPP 5G NR Phase 1Commercial Device5G NRStandard Release& Service ReleaseCommercialization

5G Mobile Subscriptions to Reach 1 Billion by 2023

(Ericsson Mobility Report, Nov.2017)

AUTONOMOUS MOBILITY

The Future Mobility is Near

(K units) **Powerful Processing** Level 3 Autonomous < 10TOPS **100TOPS+** 16,810 Vehicles ADAS Level 2 ADAS Level 5 Simple Driving Support Autonomous Driving on the Road from 2021 13,120 10,250 Low Latency with 5G Connection 5,920 2,140^{3,020} < 50ms 1ms 820 640 390 **4G LTE** 5G NR 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2017 **Higher Level Security** Level 5 Driverless Level 4 **Defined Use-Cases Biometric Authentication and Data Encryption** Level 3 **Conditional Automation** Level 0-2 Systems and Supply Chain Data Protection Partial Automation for Specific Situation

(Experts interview, BCG analysis)

Autonomous Vehicle Market

AUTONOMOUS MOBILITY

Cameras, Displays and Security Systems for the Future Autonomous Mobility

ADAS/Autonomous Driving

IT'S SMARTER SINCE IT'S CONNECTED

^{*} Source : Cisco Global Cloud Index (2016), HIS (2017)

SAMSUNG

INTERFACES ARE THE ENABLER

- Interface within Interposer, package, module, board, system
 : No chip can work alone. No co-work can be done without interface
- All the connection will be terminated at the personal device
 : MIPI will play the main role in the smart world's touch for the people

PRESENT AND FUTURE OF MIPI

Present

: Where we are – Samsung's contribution of MIPI interface

Future of MIPI Considerations – Standard, Design Technique, Market

- : Standard Lower power by better utilization of wire
- : Design Technique Power integrity aware design
- : Market Expanding boundary of MIPI for RF interface

7LPP MIPI D-PHY[®] Master 6.5Gbps Eye Diagram & CTS

Test Report

SAMSUNG

Overall Result: PASS

				1	lest Co	onfigura	ation Det	ails	
				Device Description					
				Fixture Setup	Auto Load Switching				
				High Speed Data Rate(Mbps)	6500			
				CTS Version	v2.0 and v2.1				
Sun	ımarv	ofRe	sults	ZID	100 ohm				
- un		01110	Suito	CLoad		50pF			
Test	Statistic	s			Test	Sessio	on Detail:	S	
F	ailed	D		Infiniium SW Version		6.20.801.0 DSOX91604A			
Pa	ssed 1	2		Infiniium Model Numb	er				
	Total 12	2		Infiniium Serial Numb	MY51420146				
				Application SW Version	on	3.70.90	0.800		
Margin Thresholds				Debug Mode Used		No			
N	Warning < 2 %			Compliance Limits		MIPI D-PHY Test Limit v2.0 and v2.1 (officia			
	Critical	< 0 %		Last Test Date		2018-1	0-11 13:3	6:49 UTC -06:00	
Pass	# Failed	# Trials	Test Name		Actual	Value	Margin	Pass Limits	
1	0	1	1.4.18 Clock Lane HS Clock Delta UI (UI variation) [Continuous Clock]				8.6 %	-10.00 % <= VALUE <= 10.00 %	
	0	1	1.4.20 Clock Lane HS Clock Period Jitter [SS	2.50 %		25.0 %	-5.00 % <= VALUE <= 5.00 %		
\checkmark	0	1	1.5.7 HS Clock Eye Diagram [Continuous Clock]			0	100.0 %	VALUE = 0.00000	
\checkmark	0	1	HS Data to Clock Total Jitter [Continuous Data]			1	63.0 %	VALUE <= 300 mUI	
1	0	1	HS Data to Clock Deterministic Jitter [Continuous Data]				69.0 %	VALUE <= 200 mUI	
1	0	1	HS Data to Clock Random Jitter [Continuous Data]				52.0 %	VALUE <= 100 mUI	
1	0	1	1.5.7 HS Data Eye Diagram [Continuous Data]			0.00000 1		VALUE = 0.00000	
1	0	1	1.4.19 HS Clock SSC Modulation Rate [Continuous Clock]			Hz	48.0 %	30.00 kHz <= VALUE <= 33.00 kH	
1	0	1	1.4.19 HS Clock SSC Deviation (Max) [Continuous Clock]			6154 kPPM 6.8 % -5.		-5.00000 kPPM <= VALUE <= 0.00 F	
1	0	1	1.4.19 HS Clock SSC Deviation (Min) [Continu	Jous Clock]	-1.7061	15 kPPM	34.1 %	-5.00000 kPPM <= VALUE <= 0.00	
\checkmark	0	1	1.4.19 HS Clock SSC df/dt [Continuous Clock]	827.72	PPM/us	33.8 %	VALUE <= 1.25000 kPPM/us	
1	0	1	1.4.20 Clock Lane HS Clock Period Jitter [SS	C ON][Continuous Clock]	2.97 %		20.3 %	-5.00 % <= VALUE <= 5.00 %	

SAMSUNG

7LPP MIPI D-PHY[®] Slave 6.5Gbps External Loopback Test

7LPP MIPI C-PHY[®] Master 3.5Gsps Eye Diagram & CTS

KEYSIGHT TECHNOLOGIES										
				Test Report						
				Overall Result: PASS						
				Test Configuration Details						
				Device Description						
			Data Ty	pe	HS Sig	HS Signal				
			LPEsca	peMode	No	No				
			T3Prog	SeqMode	No	No				
			T3-PRO	T3-PROGSEQ Sequence		01234012340123				
Sun	nmary	of Re	sults HS Sym	bol Rate(Msps)	3500					
			CTS Ve	rsion	v1.1					
Test	Statistic	s		Test	Session	Details				
F	ailed ()	Infinitu	n SW Version	6.20.801.0					
Pa	ssed 16	<u>}</u>	Intitutu	Infinitum Model Number		20146				
	I otal 16	5	Applica	Application SW Version		1 31 0 0				
Maro	in Thres	holds	Debug	Debug Mode Used		No				
W	arning	< 5 %	Compli	ance Limits	MIPI C-I	MIPI C-PHY Test Limit v1.1 (official)				
	Critical	< 0 %	Last Te	Last Test Date		0-11 08:50:55 UTC -06:00				
Deer	45-3-4	# Taiala	To ad Name	A - 4		Dana Limita				
Pass	# railed	# 111ais	1 2 21 HS TX Eve Diagram (VABC)(C)	Actual value	100.0 %	Pass Limits				
1	0	1	1.2.2 HIS-TX Differential Voltages (VOD AB Strong1) [Mean]	(C) 218 m\/	27.3.%					
	0	1	1.2.7 HS TX Differential Voltages (VOD AB Week1) [Mean]	(c) 210 mV	12 4 %					
	0	1	1.2.7 HS TX Differential Voltages (VOD AB Weak() [Mean](c) 110 m\/	13 / %	VALUE < 97 mV				
	0	1	1.2.7 HS-TX Differential Voltages (VOD-AB-Strong0) [Mean]	(C) -219 mV	27.0 %	VALUE > -300 mV				
1	0	1	1.2.7 HS-TX Differential Voltages (VOD-BC-Strong1) [Mean]	(C) 216 mV	28.0 %	VALUE < 300 mV				
	0	1	1.2.7 HS-TX Differential Voltages (VOD-BC-Weak1) [Mean](a) 108 mV	11.3 %	VALUE > 97 mV				
1	0	1	1.2.7 HS-TX Differential Voltages (VOD-BC-Weak0) [Mean](c) =107 mV	10.3 %	VALUE < -97 mV				
	0	1	1.2.7 HS-TX Differential Voltages (VOD-BC-Strong0) [Mean]	(C) -214 mV	28.7 %	VALUE > -300 mV				
1	0	1	1.2.7 HS-TX Differential Voltages (VOD-CA-Strong1) [Mean]	(C) 215 mV	28.3 %	VALUE < 300 mV				
1	0	1	1.2.7 HS-TX Differential Voltages (VOD-CA-Weak1) [Mean](C) 108 mV	11.3 %	VALUE > 97 mV				
1	0	1	1.2.7 HS-TX Differential Voltages (VOD-CA-Weak0) [Mean](C) -106 mV	9.3 %	VALUE < -97 mV				
1	0	1	1.2.7 HS-TX Differential Voltages (VOD-CA-Strong0) [Mean]	(C) -215 mV	28.3 %	VALUE > -300 mV				
1	0	1	1.2.8 HS-TX Differential Voltage Mismatch (ΔVOD)(C)	5 mV	70.6 %	VALUE < 17 mV				
1	0	1	1.2.19 HS Instantaneous UI (UIINST Max)(C)	337 ps	97.3 %	VALUE < 12.500 ns				
1	0	1	1.2.20 HS Delta III (AUI) [above 1Gsps](C)	-420 m%	45.8 %	-5.00 % <= VALUE <= 5.00 %				

7LPP MIPI C-PHY[®] Slave 3.5Gsps External Loopback Test

Configure HS Tests • • Test 2.3.1 Amplitude Tolerance Data • 💿 🔛 🕒 🛞 🔍 📑 🔿										
Measurem	Result	VOD [mV]	Min Passed VCPRX [mV]	Min Tested VCPRX [mV]	Min Spec VCPRX [mV]	Max Passed VCPRX [mV]	Max Tested VCPRX [mV]	Max Spec VCPRX [mV]		
1ent I	pass	580	N/A	N/A	95	390	390	390		
Histor	pass	160	N/A	N/A	95	390	390	390		
Ŷ	pass	540	95	95	95	N/A	390	390		
	pass	160	95	95	95	N/A	390	390		
	(CT	ST	est2.	3.1) A	\mpli	tude	Toler	ance		
Co	onfigure	HS T	ests	• • Test 2.3.2	V_IDTH and V_II	OTL Sens -		<u>ඉ</u> 💷 එ		
Measurem	Result	VCM [mV]	Min Passed VIDTH/V_IDTL [I	M Tes mV] VIDTH/V_	lin sted VI IDTL [mV] VI	Min Spec (DTH/V_IDTL [mV]				
lent His	pass	250	160		35	80				

SAMSUNG

(CTS Test2.3.2) V_IDTH and V_IDTL Sensitivity

C	onfigure	HST	ests		3.3 Jitter Tolera	nnce Data0 🔹	. Þ I	S 😪 📑 4	С [–]
Measurement	Result	VCM [mV]	Min Passed VCM [mV]	Min Tested VCM [mV]	Max Passed VCM [mV]	Max Tested VCM [mV]			
	pass	310	310	310	310	310			
Histo	pass	175	175	175	310	310			
TY.		(CTS T	est2	.3.3)	Jitte	r To	lerance	

FUTURE STANDARD – LOW POWER

(Power) Overhead by line coding

FUTURE STANDARD – LOW POWER

128/130b coding

- : Well verified in protocol point of view
- : Advantageous in DC link with no DC-wandering
- : Fits well with less channel loss \rightarrow small dynamic range for RX input
- : Homework Full packet base command (ex. End of Burst), Unipro structure

128/130b after Scrambling

FUTURE TECHNIQUE – PI AWARENESS

PI is a stepping stone for higher speed operation

Accurate Modeling for Early-stage PSI Estimation

• 3D model extraction & RTL-based current profile

A

[Interconnect]

[I/O Phy]

[Channel]

nannel]

Advanced Analysis Flow (Jitter, Link Simulation)

[Power Supply Induced Jitter]

IBIS-AMI model

IBIS-AMI model

[Test Scenario]

[DoE-based Full link Analysis]

PSI Design Guidance for System-level Optimization

- Power budgeting
- Decap guidance

[Chip-package-board PDN]

FURTURE MARKET – RF INTERFACE

Finding unified solutions for diverse RF interface between RF and baseband chips

SAMSUNG

More fragmented RF interfaces for each mobile RF players

KEY TAKEAWAY

SMART WORLD

• Intelligence on Everything

 \propto°

• Smart devices are smarter by connection

CONNECTED

- Globally by DC and IoT
- Finally by Personal/Mobile devices

BY MIPI

- MIPI's roles are enabling more mobile connection through challenge
- Better wire utilization, power integrity, unified spec for between RF mobile chipsets