mipi[®] DEVCON

Miguel Rodriguez Analogix Semiconductor

High-Performance VR Applications Drive High-Resolution Displays with MIPI DSISM MIPI ALLIANCE DEVELOPERS CONFERENCE

SEOUL

Today's Agenda

- VR Head Mounted Device (HMD) Use Cases and Trends
 - Cardboard, high-performance (tethered), all-in-one
 - Dedicated displays provide best user experience
 - Requirement for higher throughput for both video and data for high-end VR and mainstream VR
- MIPI DSISM delivers high performance for VR configurations
 - MIPI is the main interface for VR displays
 - Architecture examples: DisplayPort is the most common source for VR content
 - Combo MIPI C-PHYSM/D-PHYSM provides system flexibility for optimum performance
 - Leading VR display controller enables top VR headsets by leveraging key MIPI features

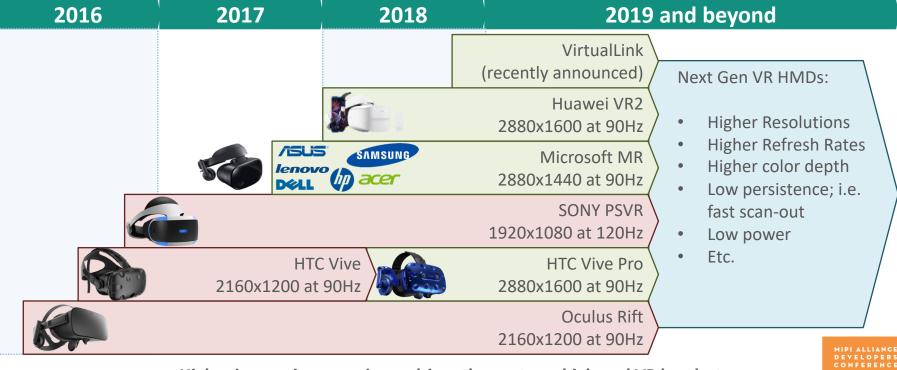
MIPI ALLIANCE DEVELOPERS CONFERENCE 19 OCTOBER 2018 SEOUL

Analogix Semiconductor

VR Head Mounted Device (HMD) Use Cases

Cardboard	Tethered	Standalone
 Introduced in 2014 Entry level, low cost VR system Smartphone provides graphics engine, display and limited sensor capability Apps running on smartphone provide VR experience VR Video Performance Limited by smartphone specs; i.e. displays with low resolution and refresh rates High heat dissipation from smartphone battery 	 Introduced in 2016 and 2017; refreshed in 2018 High-end level HMD with dedicated display(s) and sensors Requires high-end GPU for video transmission Primary application is gaming and commercial/retail VR Video Performance Higher resolution and refresh rates than smartphone displays (up to 2880x1600 and 120Hz respectively) Lighter and lower heat dissipation 	 Introduced in 2018 Mainstream, similar to cardboard predecessor Similar architecture as smartphones but tuned for VR use cases Uses higher performance display VR Video Performance Achieves higher resolution and refresh rates than cardboard but still less than tethered HMDs Lower heat dissipation and lighter than cardboard predecessor

Dedicated VR displays provide the best user experience


MIPI.ORG/DEVCON | 2018

19 OCTOBER 2018

SEOUL

High-End VR Head Mounted Device (HMD) Trends

Higher immersion experience drives the next gen high-end VR headsets

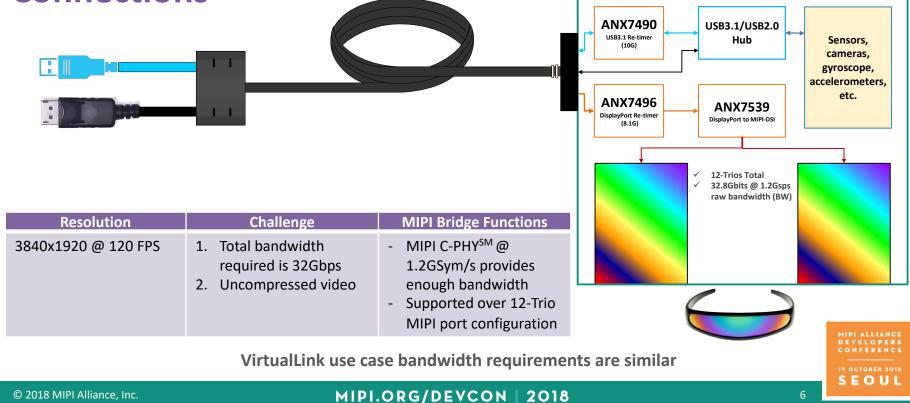
MIPI.ORG/DEVCON | 2018

© 2018 MIPI Alliance, Inc.

Mainstream VR Head Mounted Display (HMD) Trends

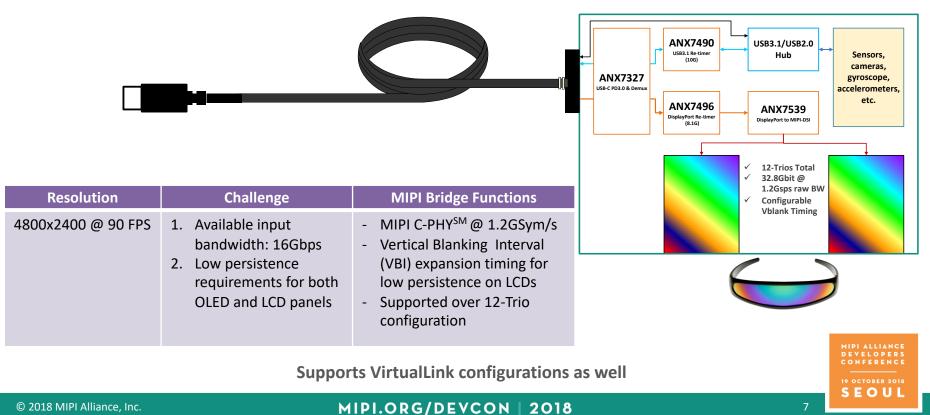
 VR Performance 2560 x 1440 @ 90 FPS 2880 x 1600 @ 90 FPS 3 DoF only; i.e. head orientation only VR Performance 2880 x 1600 @ 90 FPS 3600 x 1800 @ 90 FPS 6 DoF and Inside-out p tracking 	 VR Performance 3600 x 1800 @ 120 FPS 3840 x 2160 @ 90 FPS 6 DoF and inside-out positional tracking with room scale setup 				
Yaw					
	6 DoF positional tracking, total immersive interaction, object detection, room-scale setup, etc.				
6 DoF positional tracking	6 DoF positional tracking → head orientation and movement along X, Y, Z axis; inside-out positional tracking				

DEVELOPER CONFERENC

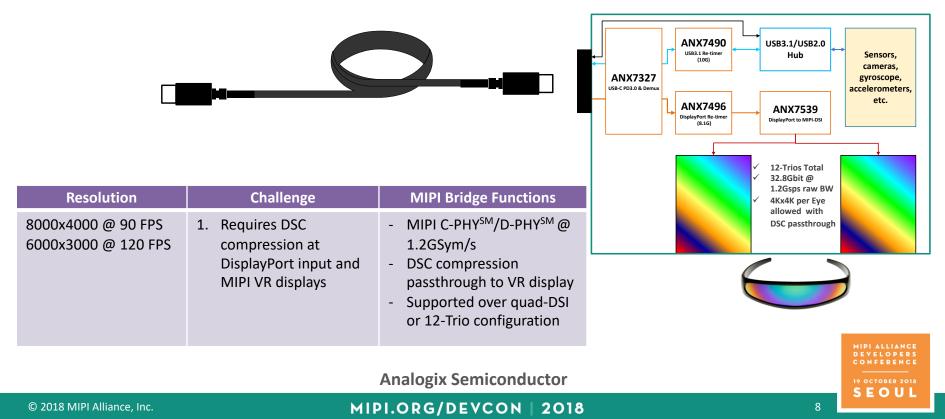

SEOUL

Balance between performance, immersion and power is key for mainstream VR headsets

© 2018 MIPI Alliance, Inc.



Case 1: High-End/Mainstream HMD with Standard Connections



Case 2: Mainstream HMD with USB-C Input

Case 3: High-End HMD with High Resolutions

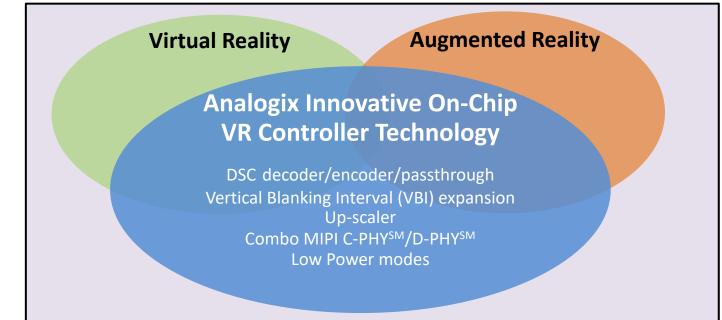
MIPI DSISM Enables High-Performance Video

	MIPI C-PHY SM Effective Bandwidth over 12-trios			MIPI D-PHY SM Effective Bandwidth over 16-DSI		
Signal Speed	1GHz	1.2GHz	1.5GHz	1GHz	1.2GHz	1.5GHz
Total bandwidth	27.36 Gbps	32.83 Gbps	41.04 Gbps	16 Gbps	19.2 Gbps	24 Gbps
Typical VR Resolutions						
3840 x 2160 @ 120Hz	Uncompressed	Uncompressed	Uncompressed	Compressed	Compressed	Compressed
3840 x 2160 @ 90Hz	Uncompressed	Uncompressed	Uncompressed	Compressed	Uncompressed	Uncompressed
4800 x 2400 @ 90Hz	Uncompressed	Uncompressed	Uncompressed	Compressed	Compressed	Compressed

- Combo MIPI C-PHYSM/D-PHYSM provides system flexibility for uncompressed and compressed video support at VR specific resolutions

- Higher resolutions and frame rates can be achieved with MIPI C-PHYSM + compressed video

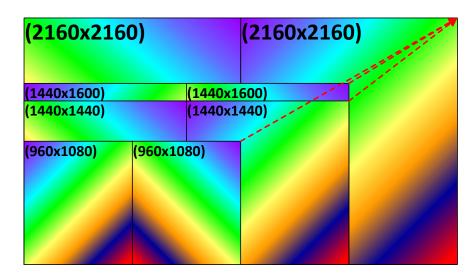
Notes:


- Additional blanking will result in higher bandwidth requirements; above assumes very little blanking
- 4K @ 120 resolutions cannot be supported without compression (VESA DSC) for MIPI D-PHYSM
- ANX7538/39 is the only VR HMD controller that can support uncompressed 4K2K @ 120 FPS including extended blanking for low persistence
- Higher resolutions (greater than 3K per eye) requires DSC passthrough

Achieve the optimum power & performance with MIPI Combo MIPI C-PHYSM/MIPI D-PHYSM

Analogix Semiconductor

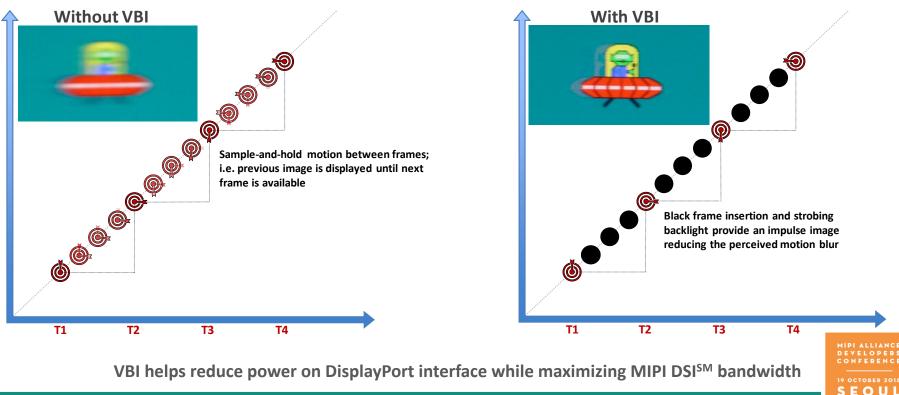
Leading VR/AR HMD Display Controller Provides Complementary Features to MIPI DSISM


ANX7539 is the Industry's First VR/AR controller with VBI, Scalar, MIPI C-PHYSM and compression

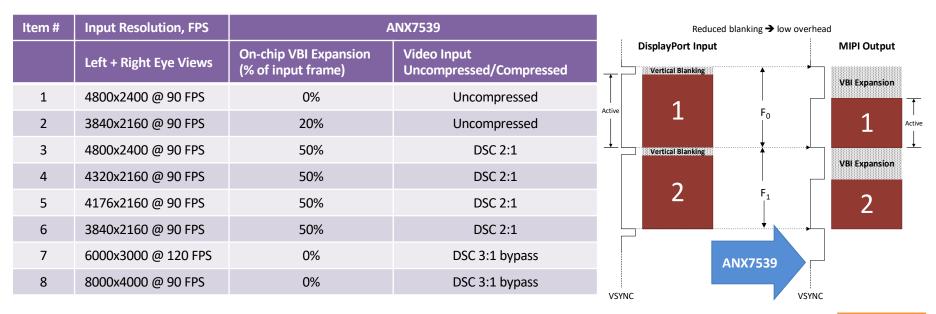
MIPI ALLIANCE DEVELOPERS CONFERENCE 19 OCTOBER 2018 SEOUL

On-Chip Video Scaler Supports VR Display Resolutions

- Existing content format can leverage larger resolution VR displays with MIPI DSISM interfaces
- Allows upscaling to larger native VR display resolutions; it prevents
 - Pillarboxing, letterboxing
 - No video in some cases



Analogix Semiconductor



Vertical Blanking Interval (VBI) Expansion

ANX7539 Ideal for High-End VR HMD Applications

MIPI ALLIANCE DEVELOPERS CONFERENCE 19 OCTOBER 2018 SEOUL

Analogix Semiconductor

In Summary

- MIPI DSISM interface provides the necessary feature set to enable today's and tomorrow's high-performance displays
- Immersion and user experience continues to drive the performance requirements for VR HMDs
- Intelligent VR and AR display controllers will power the next generation of HMDs
- Analogix leads with innovative technology and products for AR/VR by leveraging and maximizing industry standards (MIPI DSISM, DisplayPort, USB-C, etc.)

Analogix Semiconductor

ADDITIONAL RESOURCES

- <u>www.analogix.com/en/solutions/vrarheadset</u>
- <u>www.analogix.com/en/dp-mipi-converter</u>
- www.analogix.com/en/system/files/AA-005715-PB-2-ANX7539 Product Brief.pdf

Analogix Semiconductor

mipi DEVCON THANK YOU

MIPI ALLIANCE DEVELOPERS CONFERENCE

SEOUL