
Copyright © 2023 MIPI Alliance, Inc.

Frequently Asked Questions (FAQ)

for MIPI I3C HCISM v1.2

FAQ Version 1.0

11 August 2023

MIPI Board Approved 20 September 2023

Public Release Edition

This is an informative document, not a MIPI Specification.

Various rights and obligations that apply solely to MIPI Specifications (as defined in the MIPI

Membership Agreement and MIPI Bylaws) including, but not limited to, patent license rights and

obligations, do not apply to this document.

Further technical changes to this document are expected as work continues in the MIPI Software

Working Group.

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

ii Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

NOTICE OF DISCLAIMER

The material contained herein is provided on an “AS IS” basis. To the maximum extent permitted by

applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the authors and developers

of this material and MIPI Alliance Inc. (“MIPI”) hereby disclaim all other warranties and conditions, either

express, implied or statutory, including, but not limited to, any (if any) implied warranties, duties or

conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of responses,

of results, of workmanlike effort, of lack of viruses, and of lack of negligence. ALSO, THERE IS NO

WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION,

CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THIS

MATERIAL.

IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR MIPI BE LIABLE TO

ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST

PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT,

INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR

OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO

THIS MATERIAL, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE

POSSIBILITY OF SUCH DAMAGES.

The material contained herein is not a license, either expressly or impliedly, to any IPR owned or controlled

by any of the authors or developers of this material or MIPI. Any license to use this material is granted

separately from this document. This material is protected by copyright laws, and may not be reproduced,

republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the

express prior written permission of MIPI Alliance. MIPI, MIPI Alliance and the dotted rainbow arch and all

related trademarks, service marks, tradenames, and other intellectual property are the exclusive property of

MIPI Alliance Inc. and cannot be used without its express prior written permission. The use or

implementation of this material may involve or require the use of intellectual property rights (“IPR”)

including (but not limited to) patents, patent applications, or copyrights owned by one or more parties,

whether or not members of MIPI. MIPI does not make any search or investigation for IPR, nor does MIPI

require or request the disclosure of any IPR or claims of IPR as respects the contents of this material or

otherwise.

Without limiting the generality of the disclaimers stated above, users of this material are further notified that

MIPI: (a) does not evaluate, test or verify the accuracy, soundness or credibility of the contents of this

material; (b) does not monitor or enforce compliance with the contents of this material; and (c) does not

certify, test, or in any manner investigate products or services or any claims of compliance with MIPI

specifications or related material.

Questions pertaining to this material, or the terms or conditions of its provision, should be addressed to:

MIPI Alliance, Inc.

c/o IEEE-ISTO

445 Hoes Lane, Piscataway New Jersey 08854, United States

Attn: Executive Director

Special Note Concerning MIPI I3C and MIPI I3C Basic

As described in the I3C Basic specification, certain parties have agreed to grant additional rights to I3C Basic

implementers, beyond those rights granted under the MIPI Membership Agreement or MIPI Bylaws.

Contribution to or other participation in the development of this FAQ document does not create any

implication that a party has agreed to grant any additional rights in connection with I3C Basic. Consistent

with the statements above, nothing in or about this FAQ document alters any party’s rights or obligations

associated with I3C or I3C Basic.

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. iii

Public Release Edition

Contents
Release History .. vii

1 Introduction ...1

2 Frequently Asked Questions ..3

General Questions ..5
2.1 Introduction to MIPI I3C HCI ... 5

Q1.1 What is MIPI I3C HCI? .. 5

Q1.2 What is MIPI I3C TCRI? .. 5

Q1.3 What are MIPI I3C and I3C Basic? .. 5

Q1.4 Why was I3C HCI introduced? ... 5

Q1.5 What are the main features of I3C HCI? ... 5

Q1.6 For which applications or use cases is I3C HCI intended? ... 5

Q1.7 How can the I3C HCI Specification and related MIPI Specifications be obtained? 5

2.2 I3C HCI Versions and Releases .. 7
Q2.1 What is new in I3C HCI v1.1? .. 7

Q2.2 What is new in I3C HCI v1.2? .. 7

Q2.3 What are the required features in I3C HCI v1.2 vs. I3C HCI v1.1 / v1.0? 8

Q2.4 Are there any I3C v1.1/v1.1.1 features that are not supported in I3C HCI v1.2? 8

Q2.5 Does a Host Controller that complies with I3C HCI v1.2 still interoperate with I3C

Target Devices that comply with I3C v1.0 or I3C Basic v1.0? ... 8

Q2.6 Can a Host Controller that supports the full I3C Specification interoperate with I3C

Target Devices that only support the I3C Basic Specification? .. 9

Q2.7 Can a Host Controller that only supports the I3C Basic Specification interoperate with

I3C Target Devices that support the full I3C Specification? ... 9

2.3 Up and Coming .. 10
Q3.1 Are there any impending fixes or Errata for I3C HCI v1.2 that should be applied now? 10

Q3.2 Are any revisions to I3C HCI v1.2 expected?... 10

Q3.3 What new features, if any, are coming to I3C HCI? ... 10

2.4 Naming and Terminology .. 11
Q4.1 What is an I3C Controller Device, and why was the I3C Master Device renamed? 11

Q4.2 What is an I3C Target Device, and why was the I3C Slave Device renamed? 11

Q4.3 What is the difference between a Bus Controller and a Host Controller?....................... 12

2.5 Ecosystem ... 13
Q5.1 Who is defining the I3C HCI Specification and other related MIPI Specifications? 13

Q5.2 Is anyone currently using I3C HCI? ... 13

Q5.3 What is the I3C HCI IP core availability in the market? ... 13

2.6 Interacting with Targets .. 14
Q6.1 Will all I3C Targets be compatible with all CCCs? .. 14

Q6.2 Can the Host send any CCCs using a Transfer Command? .. 14

Q6.3 Will Legacy I2C Targets respond to I3C commands? ... 14

Q6.4 How does a Host Controller handle a NACK of a Transfer Command? 15

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

iv Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

2.7 Interoperability Workshops .. 16
Q7.1 What is a MIPI I3C Interoperability Workshop? .. 16

Q7.2 What is the output from a MIPI I3C Interoperability Workshop? 16

Q7.3 Are MIPI I3C Interoperability Workshops an ongoing activity? 16

Q7.4 Who can attend or participate in a MIPI I3C Interoperability Workshop? 16

Q7.5 What HW/SW is typically needed to participate in a MIPI I3C Interoperability

Workshop? .. 16

Q7.6 Are there any I3C Interoperability Workshops planned for I3C v1.1.1 or I3C Basic

v1.1.1? ... 16

2.8 Conformance Testing ... 17
Q8.1 What is a MIPI Conformance Test Suite (CTS)? .. 17

Q8.2 Is there a MIPI CTS for I3C HCI? .. 17

Detailed Technical Questions ..19
2.9 Support for Optional I3C HCI Features ... 19

Q9.1 Which optional Host Controller features should an implementer support? 19

Q9.2 Are Host Controllers required to support optional I3C features such as HDR Modes or

Timing Control modes? .. 19

Q9.3 Are Host Controllers required to support Standby Controller Mode as a Secondary

Controller? .. 20

2.10 Implementation: As a Host Controller Implementer .. 21
Q10.1 How many Target Devices can a Host Controller support? .. 21

Q10.2 How does the Host Controller resolve communication conflicts on the I3C Bus? 21

Q10.3 How and when should implementers support Device Context in system memory? 22

Q10.4 If the Host Controller supports both the DAT and DCT in Device Context memory, how

is this memory partitioned? ... 23

Q10.5 What is the recommended number of entries for the DAT and the DCT? 23

Q10.6 What factors should be considered when deciding whether to implement support for PIO

Mode? ... 24

Q10.7 What factors should be considered when deciding whether to implement support for

DMA Mode? ... 25

Q10.8 Can a Host Controller implement support for both PIO Mode and DMA Mode? 25

Q10.9 How much of a Host Controller implementation must be hardware or firmware? 25

Q10.10 How should a Host Controller’s registers and queues be implemented? 25

Q10.11 What I3C data transfer speeds are required, and how should a Host Controller support

them? ... 26

Q10.12 How does a Host Controller advertise which types of Internal Control Commands are

supported? ... 27

2.11 Implementation: As a Software Developer .. 29
Q11.1 Where are the definitions for Transfer Command and Transfer Response structures? ... 29

Q11.2 Are there any companion MIPI I3C Specifications that enable software development or

system integration? ... 29

Q11.3 Are there software libraries available for I3C? ... 29

2.12 Operation in PIO Mode ... 30
Q12.1 What has changed in I3C HCI v1.1 relating to PIO Mode? .. 30

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. v

Public Release Edition

Q12.2 What has changed in I3C HCI v1.2 relating to PIO Mode? .. 30

2.13 Backwards Compatibility with I2C .. 31
Q13.1 Is an I3C Host Controller backwards compatible with I²C? Can I3C and I²C Devices

coexist on the same Bus? .. 31

Q13.2 Does the Driver need to take any additional steps if the Bus has I3C Targets that initially

act as Legacy I²C Targets? .. 31

2.14 Dynamic Address Assignment and Group Address Assignment 33
Q14.1 Can the Host Controller detect a PID collision during Dynamic Address Assignment

with the ENTDAA CCC? .. 33

Q14.2 Does the Host Controller require any special support for Group Addressing? 33

Q14.3 How does the use of any Address Assignment CCCs affect existing DAT entries? 33

Q14.4 How can an I3C Target’s assigned Dynamic Address be changed? 33

Q14.5 Should the Driver clear an existing DAT entry if an assigned Dynamic Address or Group

Address is no longer valid? ... 34

Q14.6 Does the RSTDAA CCC also clear any assigned Group Addresses? 34

Q14.7 How does the RSTGRPA CCC affect existing DAT entries with Group Addresses? 34

2.15 In-Band Interrupt and Hot-Join .. 35
Q15.1 How can an I3C Controller support Pending Read Notifications? 35

Q15.2 Can the Driver tell the Host Controller to deny any Hot-Join Requests? 35

Q15.3 How should the Driver prepare for situations where the Host Controller frequently

processes Hot-Join Requests on the I3C Bus? .. 35

2.16 Common Command Codes (CCCs) ... 37
Q16.1 What are the differences in CCC behaviors for I3C HCI v1.1 and later? 37

Q16.2 Does I3C HCI support sending CCCs in HDR Modes? ... 37

Q16.3 Does the mandated “single-retry model” apply to all Direct Read CCCs? 37

Q16.4 Does the Host Controller check to see if any CCCs that require Defining Bytes are

always indicated with a Defining Byte in the Transfer Command? 37

Q16.5 Does a Host Controller support the use of Vendor/Standard Extension CCCs in Transfer

Commands? .. 37

Q16.6 Can the Driver mix Transfer Commands that are CCCs with Private Read/Write Transfer

Commands? .. 37

Q16.7 What is the new Command Code value 0x1F for CCCs, and how should it be used?.... 37

2.17 Resets and Error Handling ... 39
Q17.1 How does the Host Controller handle the defined I3C Error Types for I3C Controller

Devices? .. 39

Q17.2 How can the Driver initiate a recovery procedure for a stuck SDA lane? 39

Q17.3 How can the Driver initiate a recovery procedure that requires either a STOP condition

or an HDR Exit Pattern? ... 39

Q17.4 Does the Host Controller automatically use the GETSTATUS CCC in cases where a

Target does not respond to a transfer or CCC? ... 39

Q17.5 How can the Driver initiate a Target Reset action? ... 39

Q17.6 What is a Command Sequence stall or timeout, and how does the Host Controller handle

this situation? .. 40

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

vi Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

3 Terminology ...41
3.1 Definitions ... 41
3.2 Abbreviations ... 41
3.3 Style Conventions ... 41
3.4 Acronyms .. 42

4 References ..43

.

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. vii

Public Release Edition

Release History

Date Version Description

20-Sep-2023 FAQ v1.0 Initial Board Approved release.

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

viii Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

This page intentionally left blank.

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 1

Public Release Edition

1 Introduction
This FAQ was developed to introduce the MIPI I3C HCI Specification to developers and users. The MIPI 1

Software WG compiled these Frequently Asked Questions (FAQs) to assist Member implementation activity 2

and to clarify and resolve some ambiguous Sections of the Specification. 3

Since the I3C HCI Specification describes the behaviors and requirements of an I3C Controller on an I3C 4

Bus, the reader should also be aware of the current versions of the I3C Specifications: 5

Note: 6

The most current version of the full I3C Specification is I3C v1.1.1. FAQ entries reflect all 7

technical and editorial updates (i.e., the changes from I3C v1.0 or v1.1 to v1.1.1). 8

The most current version of the I3C Basic Specification is I3C Basic v1.1.1. FAQ entries reflect 9

all technical and editorial updates (i.e., the changes from I3C Basic v1.0 to v1.1.1). Note that there 10

is no I3C Basic v1.0; this version number was skipped. 11

Throughout this FAQ, unless otherwise noted, the terms “MIPI I3C” and ‘I3C’ refer to both I3C 12

[MIPI01][MIPI08][MIPI10] and I3C Basic [MIPI07][MIPI11], unless otherwise specified. 13

Note: 14

Unless otherwise noted, a reference to a numbered section of the I3C Specification applies to both 15

the I3C Specification and the I3C Basic Specification (i.e., section numbers are aligned across the 16

two Specifications). 17

None of the answers in this FAQ are intended to overwrite or overrule the information in the I3C 18

Specification [MIPI01][MIPI08][MIPI10] or the I3C Basic Specification [MIPI07][MIPI11]. 19

The questions are organized into Sections by topic and grouped into two higher-level categories: general 20

questions about I3C HCI and the ecosystem and detailed technical questions about the material in the I3C 21

HCI Specification. 22

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

2 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

Section Title Focus

2.1 Introduction to MIPI I3C HCI I’ve heard about I3C HCI. Where can I read more about

it?

2.2 I3C HCI Versions and Releases What versions of I3C HCI have been released, and what

has changed?

2.3 Up and Coming Questions related to the next revision (and/or Errata) of

the I3C HCI Specification.

2.4 Naming and Terminology Questions related to recent changes to I3C terminology

and how these affect the I3C HCI Specification.

2.5 Ecosystem Questions related to design kits, IP, test, and other parts

of the enablement ecosystem for I3C HCI.

2.6 Interacting with Targets Questions about Host Controller usage with I3C and I²C

Target Devices

2.7 Interoperability Workshops Questions asked by early Interoperability Workshop

participants.

2.8 Conformance Testing Questions related to testing device conformance to the

I3C Specification.

2.9 Support for Optional I3C HCI Features Questions about minimum requirements and which

optional features should be supported by implementers.

2.10 Implementation: As a Host Controller

Implementer

Questions relating to Host Controller implementation and

design choices.

2.11 Implementation: As a Software Developer Questions asked by software developers.

2.12 Operation in PIO Mode Specific questions about changes to PIO Mode

operational details.

2.13 Backwards Compatibility with I2C How can I3C Host Controllers interoperate with Legacy

I²C Target Devices?

2.14 Dynamic Address Assignment and Group

Address Assignment

Questions about Address Assignment and how the

software uses the Host Controller to manage I3C Target

Device addresses.

2.15 In-Band Interrupt and Hot-Join Questions about how the Host Controller responds to

I3C Target-initiated requests on the I3C Bus.

2.16 Common Command Codes (CCCs) Questions about how the Host Controller processes

Transfer Commands to send CCCs to I3C Targets.

2.17 Resets and Error Handling How do the Host Controller and Driver handle error

scenarios and Target reset operations?

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 3

Public Release Edition

2 Frequently Asked Questions
This FAQ is organized by general topic area and I3C HCI features and capabilities: 23

General Questions 24

Section 2.1: Introduction to MIPI I3C HCI 25

Section 2.2: I3C HCI Versions and Releases 26

Section 2.3: Up and Coming 27

Section 2.4: Naming and Terminology 28

Section 2.5: Ecosystem 29

Section 2.6: Interacting with Targets 30

Section 2.7: Interoperability Workshops 31

Section 2.8: Conformance Testing 32

Detailed Technical Questions 33

Section 2.9: Support for Optional I3C HCI Features 34

Section 2.10: Implementation: As a Host Controller Implementer 35

Section 2.11: Implementation: As a Software Developer 36

Section 2.12: Operation in PIO Mode 37

Section 2.13: Backwards Compatibility with I2C 38

Section 2.14: Dynamic Address Assignment and Group Address Assignment 39

Section 2.15: In-Band Interrupt and Hot-Join 40

Section 2.16: Common Command Codes (CCCs) 41

Section 2.17: Resets and Error Handling 42

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

4 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

This page intentionally left blank.

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 5

Public Release Edition

General Questions 43

2.1 Introduction to MIPI I3C HCI

Q1.1 What is MIPI I3C HCI?

MIPI I3C HCI is a Host Controller Interface Specification that defines the features and behaviors of an I3C 44

Bus Controller using a register-based interface. 45

Q1.2 What is MIPI I3C TCRI?

MIPI I3C TCRI defines the Transfer Command Response Interface that is useful for various applications 46

where an I3C Controller processes Transfer Commands and generates Transfer Responses. I3C HCI defines 47

the behavior of a Host Controller that relies on the standard Transfer Commands and Transfer Responses 48

defined in the I3C TCRI Specification. 49

Q1.3 What are MIPI I3C and I3C Basic?

MIPI I3C is a serial communication interface Specification that improves upon the features, performance, 50

and power use of I²C while maintaining backwards compatibility for most Devices. 51

MIPI I3C Basic is technically identical to I3C except with a reduced feature set and different licensing. 52

I3C HCI provides a Host Controller interface for I3C Bus Controller logic that implements support for I3C 53

or I3C Basic, although certain features and capabilities will not be available with I3C Basic. 54

Q1.4 Why was I3C HCI introduced?

I3C HCI’s main purposes are to: 55

1. Standardize the host interface to I3C Bus Controller logic. 56

2. Define the behavioral expectations for an I3C Bus Controller that accepts Transfer Commands and 57

generates Transfer Responses. 58

3. Define a framework for implementers to implement optional extended capabilities that provide 59

additional features specific to various applications. 60

Q1.5 What are the main features of I3C HCI?

MIPI I3C carries the advantages of I²C in simplicity, low pin count, easy board design, and multi-drop (vs. 61

point-to-point) but provides the higher data rates, simpler pads, and lower power of SPI. I3C adds higher 62

throughput for a given frequency, In-Band Interrupts (from Target to Controller), Dynamic Addressing, 63

advanced power management, and Hot-Join. 64

Q1.6 For which applications or use cases is I3C HCI intended?

I3C HCI is intended for a wide range of applications, with implementations that can be in micro-controllers 65

(MCs), application processing units (APUs), or PC peripherals attached to a CPU (either integrated or as 66

expansion Devices). It can scale up to more advanced applications that require additional performance and 67

autonomy from the Host APU/CPU if the Host system memory can be accessed directly by the Host 68

Controller. 69

Q1.7 How can the I3C HCI Specification and related MIPI Specifications be obtained?

• MIPI I3C HCI Specification: MIPI Alliance members have access and rights to the I3C HCI 70

Specification through their MIPI membership and the member website. The latest adopted version 71

is I3C HCI v1.2 [MIPI12]. 72

• Non-members may download a public version of the I3C HCI Specification by visiting the 73

I3C HCI page on the MIPI Alliance website: https://www.mipi.org/specifications/i3c-hci. 74

• MIPI I3C TCRI Specification: MIPI Alliance members have access and rights to the I3C TCRI 75

Specification through their MIPI membership and the member website. The latest adopted version 76

is I3C TCRI v1.0 [MIPI06]. 77

https://www.mipi.org/specifications/i3c-hci

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

6 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

• Non-members may download a public version of the I3C TCRI Specification by visiting the 78

I3C TCRI page on the MIPI Alliance website: https://www.mipi.org/specifications/i3c-tcri. 79

• MIPI I3C Specification: MIPI Alliance members have access and rights to the I3C Specification 80

through their MIPI membership and the member website. The latest adopted version is I3C v1.1.1 81

[MIPI10]. 82

• MIPI I3C Basic Specification: MIPI Alliance made the I3C Basic v1.0 Specification [MIPI07] 83

publicly available for download in December 2018. The latest adopted version is I3C Basic v1.1.1 84

[MIPI11]. MIPI Alliance members have access and rights to the I3C Basic Specification through 85

their MIPI membership and the member website. 86

• Non-members may download a copyright-only version of the I3C Basic Specification by 87

visiting the I3C Basic page on the MIPI Alliance website: 88

https://www.mipi.org/specifications/i3c-sensor-specification. 89

https://www.mipi.org/specifications/i3c-tcri
https://www.mipi.org/specifications/i3c-sensor-specification

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 7

Public Release Edition

2.2 I3C HCI Versions and Releases

Q2.1 What is new in I3C HCI v1.1?

I3C HCI v1.1 is an advancement of the I3C HCI Specification that includes clarifications and corrections 90

from the Errata of I3C HCI v1.0 and new features and capabilities provided by versions 1.1 and later of the 91

I3C Specification and the I3C Basic Specification. Some of these new features and capabilities are required. 92

The new features in I3C HCI v1.1 include: 93

• Transfer Command support for Broadcast CCCs and Directed CCCs with Defining Bytes 94

• Command flows for the I3C Target Reset Pattern, including the RSTACT CCC for configurable 95

Target Reset actions 96

• Support for additional Dynamic Address Assignment methods and Group Addresses 97

• Support for various I3C Bus recovery procedures 98

• Numerous improvements to the standard Host Controller interface for configuration, command, 99

and control 100

I3C HCI v1.1 also includes improved definitions of normative content, including an updated Theory of 101

Operation section that more fully describes PIO Mode and how the Host interacts with the Host Controller 102

in PIO Mode and improved definitions of error handling for I3C transfers. This version of I3C HCI underwent 103

significant improvements to clarify the Host Controller’s implementation requirements and behavioral 104

expectations. 105

Note: 106

I3C HCI v1.1 has been superseded by I3C HCI v1.2. MIPI Alliance recommends that implementers 107

use I3C HCI v1.2 as the basis for new implementations. 108

Q2.2 What is new in I3C HCI v1.2?

I3C HCI v1.2 is an advancement of the I3C HCI Specification that includes clarifications to facilitate a richer 109

interface and new features that make I3C HCI even more attractive to a broader set of use cases and 110

applications. Many of these new features are optional-normative and can be selectively supported by the 111

implementer as determined by the specific application, the use case for the I3C Bus, and the intended size 112

and complexity of the Host Controller logic. 113

The new features in I3C HCI v1.2 include: 114

• Scheduled Command Processing 115

• Standby Controller mode with I3C Secondary Controller logic 116

• Dead Bus Recovery mechanism 117

• Improvements to In-Band Interrupt (IBI) status reporting for different I3C Bus events 118

• I3C Target credit counting mechanism for managing IBI Requests based on Host readiness 119

• Support for Host-initiated abort of IBI data payloads 120

• Improvements to the PIO Mode capabilities for Host Controller implementations that choose to 121

support PIO Mode 122

• Support for HDR Mode Data Transfer and Early Termination capabilities for optional HDR Modes 123

I3C HCI v1.2 also includes fixes, corrections, and clarifications for all issues addressed by the Errata 01 for 124

I3C HCI v1.1. 125

Starting with I3C HCI v1.2, the definitions of standard Transfer Commands and Transfer Responses were 126

moved to the I3C TCRI Specification to promote reuse of these definitions for other applications of I3C. I3C 127

HCI v1.2 includes references to the I3C TCRI Specification for the I3C Bus Controller logic behaviors and 128

Transfer Command and Transfer Response processing. I3C HCI v1.2 also focuses on the Host Controller’s 129

specific requirements and features that pertain to its interface with the Host and other optional advanced 130

capabilities, including those listed above, that are independent of Transfer Command/Response processing. 131

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

8 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

Q2.3 What are the required features in I3C HCI v1.2 vs. I3C HCI v1.1 / v1.0?

Almost all of the new features of I3C HCI v1.2 are optional. While I3C HCI v1.1 defines fewer new features, 132

most of them are required. 133

Specifically, it should be noted that: 134

• The Transfer Command and Transfer Response formats are now defined in I3C TCRI v1.0. 135

• Additionally, the Transfer Command and Transfer Response formats in I3C HCI v1.1 were 136

updated and extended (compared to I3C HCI v1.0) with improved support for Broadcast CCCs 137

and Direct CCCs, including Defining Bytes. Support for CCCs with Defining Bytes is now 138

mandatory for I3C HCI v1.1 and later. 139

• If the Host Controller supports both PIO Mode and Direct Memory Access (DMA) Mode, then 140

changing the operating mode (i.e., switching active operation between PIO Mode and DMA 141

Mode) is now explicitly controlled by writing to an HCI register field and is no longer controlled 142

by the number of currently enabled Ring Bundles (as defined in I3C HCI v1.0). 143

• I3C HCI v1.1 and later define new requirements for stalled Transfer Command sequences (i.e., 144

successive Transfer Commands that are separated by TOC=0) for situations where the Host fails to 145

enqueue all such Transfer Commands before the Host Controller processes the last enqueued 146

Transfer Command that ends with TOC=0 (i.e., when the Host does not intend to drive a STOP 147

condition on the I3C Bus). 148

• I3C HCI v1.1 and later also define new Internal Control Command subtypes, including a special 149

command that initiates an I3C Target Reset pattern. This can be used on its own or in a special 150

sequence that uses RSTACT CCCs (either Broadcast or Direct) to address one or more I3C Targets 151

and configure a specific Target Reset action. 152

• I3C HCI v1.2 uses the I3C v1.1.1 and I3C Basic v1.1.1 Specifications as normative references for 153

behavior for an I3C Bus Controller. A Host Controller that complies with I3C HCI v1.2 must also 154

comply with all normative requirements for an I3C Bus Controller as defined in these 155

specifications. 156

MIPI recommends that implementers study the updated I3C HCI v1.2 Specification and other related MIPI 157

I3C Specifications carefully to understand the requirements and any optional features they might use for their 158

applications. 159

Q2.4 Are there any I3C v1.1/v1.1.1 features that are not supported in I3C HCI v1.2?

Yes. I3C HCI v1.2 does not yet support the following features: 160

• HDR-BT (Bulk Transfer) Mode 161

• Multi-Lane transfers (in any I3C Mode) 162

• CCCs in HDR Modes 163

• Specific types of ‘combo’ transfers that are necessary for more advanced use cases, such as 164

Device-to-Device Tunneling 165

Q2.5 Does a Host Controller that complies with I3C HCI v1.2 still interoperate with I3C

Target Devices that comply with I3C v1.0 or I3C Basic v1.0?

Yes. A Host Controller can still address I3C Target Devices that comply with the earlier (and superseded) 166

versions of the I3C and I3C Basic Specifications, although such I3C Target Devices will not support any of 167

the newer features defined in the current I3C and I3C Basic Specifications. 168

When driving Transfer Commands to such Target Devices, the Host should not attempt to send such I3C 169

Target Devices any CCCs that are not defined in such I3C and I3C Basic Specifications, as such Target 170

Devices will not support them. 171

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 9

Public Release Edition

Q2.6 Can a Host Controller that supports the full I3C Specification interoperate with I3C

Target Devices that only support the I3C Basic Specification?

Yes. The I3C Basic Specification is, in general, a subset of the full I3C Specification, so the Host Controller 172

can still drive Transfer Commands in SDR Mode and any optional HDR Modes that such an I3C Target 173

Device might optionally support (for I3C Basic v1.1.1 only). The Host Controller can use the GETCAPS 174

CCC to determine which version of the I3C Specification or I3C Basic Specification and which optional 175

capabilities are supported. 176

The Host Controller should not try to drive Transfer Commands in HDR Modes to I3C Target Devices that 177

do not support these optional HDR Modes (or, for I3C Basic v1.0, any HDR Modes). However, this does not 178

prevent the Host Controller from driving Transfer Commands in HDR Modes to other I3C Target Devices 179

that support the full I3C Specification and one or more optional HDR Modes. 180

Note: 181

I3C Target Devices that only comply with I3C Basic v1.0 will not support the GETCAPS CCC. This 182

CCC (formerly defined as the GETHDRCAP CCC in I3C v1.0) was not defined in I3C Basic v1.0. In 183

this case, such an I3C Target Device will NACK the GETCAPS CCC. The Host should interpret this 184

NACK as an indication that no HDR Modes are supported by this I3C Target Device, and the I3C 185

Target Device only supports I3C Basic v1.0. 186

Q2.7 Can a Host Controller that only supports the I3C Basic Specification interoperate

with I3C Target Devices that support the full I3C Specification?

Yes, but such a Host Controller cannot use any optional transfer modes or capabilities not included in the I3C 187

Basic Specification. 188

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

10 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

2.3 Up and Coming

Q3.1 Are there any impending fixes or Errata for I3C HCI v1.2 that should be applied

now?

MIPI currently has no impending fixes or Errata for I3C HCI v1.2. 189

Note that all fixes or Errata for previous versions of I3C HCI have been applied to I3C HCI v1.2. 190

Based on learning from earlier implementations, I3C Interoperability Workshops, queries from adopters, and 191

reviews by the Software WG and the I3C WG, this FAQ includes clarifications, improvements that can be 192

implemented by the I3C Host Controller, and other guidance for implementers. 193

Q3.2 Are any revisions to I3C HCI v1.2 expected?

Not currently. However, the MIPI Software WG meets regularly and is considering proposals to revise and 194

extend the Host Controller interface and its capabilities. As part of I3C HCI Specification maintenance, the 195

MIPI Software WG seeks to improve the I3C HCI Specification with clarifications and additional 196

explanation. Please direct any comments or suggestions to MIPI Alliance. 197

Q3.3 What new features, if any, are coming to I3C HCI?

There are no new approved features. However, the MIPI Software WG is considering the following: 198

• Support for HDR-BT (Bulk Transfer) Mode 199

• Support for Multi-Lane transfers 200

• Support for Device-to-Device Transfers 201

• Support for CCCs in HDR Modes 202

• Improvements and optimizations to both PIO Mode and DMA Mode 203

• Additional support for Secondary Controller capabilities 204

Implementers who are interested in these new features, and others interested in a particular use case should 205

direct any comments or suggestions to MIPI Alliance. 206

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 11

Public Release Edition

2.4 Naming and Terminology

Q4.1 What is an I3C Controller Device, and why was the I3C Master Device renamed?

As part of a terminology replacement effort across MIPI Alliance, starting with I3C v1.1.1, I3C Basic v1.1.1, 207

and I3C HCI v1.1, the terms Master and Slave have been deprecated. An I3C v1.0/v1.1 Master Device is now 208

called a Controller. There is no change to the technical definition of such an I3C Device or its role on an I3C 209

Bus. The term Controller is a better, more accurate description of the Device’s role on an I3C Bus. 210

Due to this change, the names of various CCCs and other related terms have also changed, starting with 211

v1.1.1, including: 212

Deprecated Prior Term

I3C and I3C Basic before v1.1.1

Replacement Term

I3C and I3C Basic v1.1.1 and Later

Master Controller or Bus Controller

Current Master Active Controller

Secondary Master Secondary Controller

Main Master Primary Controller

New Master (relating to Handoff) New Active Controller

Master-Capable Device Controller-Capable Device

Mastership, Mastering the Bus, etc. Controller Role, Control of the Bus, etc.

Mastership Request Controller Role Request

GETACCMST CCC GETACCCR CCC

Error Types M0 through M3 Error Types CE0 through CE3

Deprecated Prior Term

I3C HCI before v1.1

Replacement Term

I3C HCI v1.1 and Later

Register MASTER_DEVICE_ADDR Register CONTROLLER_DEVICE_ADDR

Field NON_CURRENT_MASTER_CAP in register

HC_CAPABILITIES

Field STANDBY_CR_CAP

Field M2_ERROR_COUNT in register

MX_ERROR_COUNTERS

Field CE2_ERROR_COUNT (the register name was

not changed)

Note: 213

In I3C HCI v1.1 and later, the general term Controller is used to mean “Bus Controller” for sections 214

of the implementation where it would directly interface with the I3C Bus, and “Host Controller” for 215

sections of the implementation where it would be accessed by the Host. See also Q4.3. This 216

distinction does not apply to the I3C and I3C Basic Specifications: For the I3C HCI Specification, the 217

term “Bus Controller” generally applies to the behaviors defined in the I3C and I3C Basic 218

Specifications. 219

See also Q4.2. 220

Q4.2 What is an I3C Target Device, and why was the I3C Slave Device renamed?

As part of a terminology replacement effort across MIPI Alliance, starting with I3C v1.1.1, I3C Basic v1.1.1, 221

and I3C HCI v1.1, the terms Master and Slave have been deprecated. An I3C v1.0/v1.1 Slave Device is now 222

called a Target. There is no change to the technical definition of such an I3C Device or its role on an I3C 223

Bus. 224

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

12 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

The term Target is a better, more accurate description of the Device’s role on an I3C Bus. In particular, the 225

previous term did not describe I3C transfers, which are typically sent by the I3C Controller to individual I3C 226

Devices or all I3C Devices. Target better describes how individual transfers are addressed to specific I3C 227

Devices. 228

Due to this change, the names of various CCCs and other related terms have also changed, starting with 229

v1.1.1, including: 230

Deprecated Prior Term

I3C and I3C Basic before v1.1.1

Replacement Term

I3C and I3C Basic v1.1.1 and Later

Slave Target

Slave Reset Pattern Target Reset Pattern

DEFSLVS CCC DEFTGTS CCC

Error Types S0 through S6 Error Types TE0 through TE6

See also Q4.1. 231

Q4.3 What is the difference between a Bus Controller and a Host Controller?

The I3C HCI Specification defines an I3C Bus Controller as a Device that complies with the I3C 232

Specification or the I3C Basic Specification and holds the role of Controller (i.e., it is currently the Active 233

Controller of the I3C Bus). In the I3C HCI Specification, Bus Controller logic refers to the part of an I3C 234

HCI implementation that interfaces directly with the I3C Bus and directly drives Transfer Commands to one 235

or more I3C Targets while it is the Active Controller. In most respects, Bus Controller logic is normatively 236

defined within the I3C TCRI Specification, specifically how this logic processes and executes Transfer 237

Commands and generates Transfer Responses. If the Host Controller is in Standby Controller mode because 238

it is not currently the Active Controller (i.e., it is currently acting as a Secondary Controller on the I3C Bus), 239

the Bus Controller logic is typically idle and cannot drive Transfer Commands. 240

In contrast, Host Controller describes the overall entity that contains one or more instances of Bus Controller 241

logic (i.e., one for each connected I3C Bus) as well as the part of the implementation facing the Host. This 242

term can refer to the specific interface elements and entities that are accessed by the Host (i.e., the Driver or 243

other higher-level software) and used to convey Transfer Commands, Transfer Responses, and associated 244

data bytes for such activities on the I3C Bus. This includes the configuration registers, the specific details of 245

the operating mode (PIO Mode and/or DMA Mode), and any higher-level features and capabilities that are 246

not directly related to lower-level I3C transfer activity. 247

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 13

Public Release Edition

2.5 Ecosystem

Q5.1 Who is defining the I3C HCI Specification and other related MIPI Specifications?

The I3C HCI Specification and the I3C TCRI Specification are defined by the MIPI Alliance Software 248

Working Group, which was formed in 2014. 249

The I3C Specification is defined by the MIPI Alliance I3C Working Group (originally named the Sensor 250

Working Group), which was formed in 2013. The I3C Basic Specification is defined by the MIPI Alliance 251

I3C Basic Ad-Hoc Working Group, which was formed in 2018. 252

Q5.2 Is anyone currently using I3C HCI?

Yes. Several companies have released products or IP blocks that feature integrated I3C Controller support 253

that complies with the I3C HCI Specification. Other companies offer associated verification software for 254

testing the behavior of I3C Host Controllers in various integrated circuit designs. Some companies also offer 255

protocol analyzers and verification hardware to analyze I3C Bus traffic for testing and development. 256

Since this document cannot provide a comprehensive list of such products, those interested in learning more 257

about products that support or enable I3C or the I3C HCI should contact MIPI Alliance. 258

Q5.3 What is the I3C HCI IP core availability in the market?

Some vendors now offer I3C HCI-compliant Controller IP cores for integration into ASIC Devices and 259

FPGAs. 260

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

14 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

2.6 Interacting with Targets

Q6.1 Will all I3C Targets be compatible with all CCCs?

No. Some CCCs are mandatory, whereas others are optional or conditionally supported. A specific I3C Target 261

will either support each optional or conditionally supported CCC or not, depending upon that Target’s 262

capabilities. Refer to the I3C FAQ for more information. 263

Q6.2 Can the Host send any CCCs using a Transfer Command?

While most CCCs can be sent in a Transfer Command, there are some exceptions. The Host Controller does 264

not block the use of any CCCs in Transfer Commands except for the following: 265

• The ENTDAA and SETDASA CCCs, which cannot be sent directly in a Transfer Command. 266

• The Host should use the Address Assignment Command instead of a Transfer Command, 267

because these CCCs have special requirements and require additional behaviors that a Transfer 268

Command does not support. 269

• The ENTHDR0-ENTHDR7 CCCs, which cannot be sent directly in a Transfer Command. 270

• Since HDR Modes use fundamentally different signaling protocols on the I3C Bus, these CCCs 271

must not be sent directly, as they imply that the I3C Bus will use a different signaling protocol 272

per the indicated HDR Mode for subsequent activity. 273

• To drive transfers in HDR Modes, the Host must specify the I3C Mode in the MODE field of the 274

Transfer Command, and the Bus Controller logic will automatically drive the appropriate 275

ENTHDRx CCC to enter the HDR Mode, if it is supported (see Q9.2). 276

• The GETACCCR CCC, which cannot be sent directly in a Transfer Command. 277

• Since this CCC usually initiates the Controller Role handoff procedure from the Bus Controller 278

logic to another Controller-capable device on the I3C Bus, this CCC must not be sent directly, as 279

ACK from the addressed Target device (i.e., a Secondary Controller) will usually imply that the 280

handoff procedure has been initiated. 281

• If the Host Controller supports Standby Controller mode with Secondary Controller logic, then 282

the Host may use the special Internal Control Command format that automatically sends the 283

GETACCCR CCC to an indicated Secondary Controller and then conditionally start the handoff 284

procedure based on the result. 285

If the Host Controller receives a Transfer Command with any of these blocked CCCs, then it will generate a 286

Transfer Response with error code 0xA (NOT_SUPPORTED) in field ERR_STATUS and halt execution of any 287

subsequent Transfer Commands. The Host will need to handle this error and clear any error condition as a 288

result. 289

All CCCs not listed above can be sent in Transfer Commands, including those that might be used for 290

Vendor/Standards Extensions. It is the Host’s responsibility (i.e., the Driver or software) to determine which 291

CCCs are supported or not supported by each I3C Target. In most cases, the Host can attempt to drive Transfer 292

Commands that are CCCs to any I3C Target (either Broadcast or Direct), and the Target will ignore any 293

Broadcast CCCs that it does not support and NACK any Direct CCCs that it does not support, as well as any 294

non-supported Defining Bytes with Direct CCCs. 295

Q6.3 Will Legacy I2C Targets respond to I3C commands?

In general, no. The Host Controller should begin all I3C transactions with the Broadcast Address (7'h7E), 296

although this can be controlled by field IBA_INCLUDE in register HC_CONTROL (see [MIPI12] Section 7.4.2) 297

and the special Internal Control Command type that enables or disables automatic transmission of the 298

Broadcast Address after a START (see [MIPI12] Section 8.4.2.2). 299

If the automatic Broadcast Address transmission is enabled, as noted above, then the Host Controller will 300

send START followed by the Broadcast Address for all transfers, including Private Writes and Private Reads 301

to I3C Targets. (See Q10.2.) 302

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 15

Public Release Edition

Per the I3C Application Note [MIPI05] and the I2C specification, Legacy I2C Targets will never respond to 303

the Broadcast Address. However, a Legacy I2C Target will respond to a transaction that begins with a START 304

followed by its Static Address. The Host determines whether an addressed Target is an I3C Target or a Legacy 305

I2C Target by setting field DEVICE in the Target’s DAT entry (see [MIPI12] Section 8.1). This determines 306

whether automatic Broadcast Address transmission is used after a START (if the setting was previously 307

enabled) when initiating a transaction with that Target. 308

Q6.4 How does a Host Controller handle a NACK of a Transfer Command?

This depends on the value of field DEV_NACK_RETRY_CNT in the DAT entry for the addressed I3C Target and 309

whether the Transfer Command is a Direct Read CCC. 310

• For Transfer Commands that are Direct Read CCCs, the Host Controller will always do a single 311

retry, per the mandatory single-retry model (see Q16.3). 312

• For all other Transfer Commands: 313

• If field DEV_NACK_RETRY_CNT has a value of 0x0, then the Host Controller will not retry the 314

Transfer Command if it receives a NACK. 315

• If field DEV_NACK_RETRY_CNT has a non-zero value, then the Host Controller will retry the 316

Transfer Command if it receives a NACK on the first attempt. The Host Controller will retry up 317

to N attempts (i.e., where N is the value in field DEV_NACK_RETRY_CNT). 318

• If the Host Controller receives an ACK on a subsequent attempt, then the Host Controller will 319

deem the Transfer Command to be successful and report the status in the Response Descriptor. 320

No additional retries will be performed if an ACK is received. However, on a subsequent 321

attempt, the Transfer Command might fail for reasons other than a NACK. 322

• If the Host Controller receives a NACK on the last attempt, then the Host Controller will 323

deem the Transfer Command to have failed, and it will return a Response Descriptor with a 324

value of 0x5 (NACK) in field ERR_STS. 325

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

16 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

2.7 Interoperability Workshops

Q7.1 What is a MIPI I3C Interoperability Workshop?

A MIPI I3C Interoperability Workshop is a MIPI Alliance-sponsored event where different vendors bring 326

their I3C implementations and check their interoperation with other vendors’ implementations. 327

Q7.2 What is the output from a MIPI I3C Interoperability Workshop?

There are three major outputs from a MIPI I3C Interoperability Workshop: 328

• Participating vendors can get detailed information about how well their I3C implementations 329

interoperate with other vendors’ implementations. Vendors can also compare their results. 330

• MIPI Alliance can generate an overall picture of the industry state-of-the-I3C implementation. For 331

example, they can determine how many vendors have implemented I3C and how many 332

implementations pass or fail when tested with one another. 333

• The MIPI I3C Working Group gains a better understanding of any major issues with the I3C 334

Specification. The WG can then leverage that learning by adding to this FAQ, other supporting 335

documents (such as Application Notes, per Q11.2), and possible future revisions of MIPI I3C 336

Specifications. 337

Q7.3 Are MIPI I3C Interoperability Workshops an ongoing activity?

MIPI Alliance arranges I3C Interoperability Workshop events in response to requests from its membership. 338

They have typically been co-located with regularly scheduled MIPI Member Meetings. 339

Q7.4 Who can attend or participate in a MIPI I3C Interoperability Workshop?

In general, any MIPI Alliance members who have I3C hardware ready to interoperate can participate. 340

Q7.5 What HW/SW is typically needed to participate in a MIPI I3C Interoperability

Workshop?

The minimum requirements to date are the availability of a board with an I3C Device that can connect to 341

other Devices via the three wires SDA, SCL, and GND. However, this could change in the future. It is also 342

useful to have software (e.g., running on a laptop connected to the board and an I3C Device) to interactively 343

view transmitted and received Bus communications, but this might not be required for Targets. 344

Currently, there are solutions working at 3.3V and 1.8V. 345

Q7.6 Are there any I3C Interoperability Workshops planned for I3C v1.1.1 or I3C Basic

v1.1.1?

MIPI Alliance has been hosting I3C Interoperability Workshops in conjunction with MIPI Member Meetings, 346

typically two to three times per year. This FAQ was last updated in August 2023. 347

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 17

Public Release Edition

2.8 Conformance Testing

Q8.1 What is a MIPI Conformance Test Suite (CTS)?

A MIPI WG develops a CTS document to improve the interoperability of products that implement a given 348

MIPI interface Specification. The CTS defines a set of conformance or interoperability tests, whereby a 349

product can be tested against other implementations of the same Specification. 350

Q8.2 Is there a MIPI CTS for I3C HCI?

MIPI Alliance has not yet released a CTS for I3C HCI. Interested parties who are MIPI members should 351

reach out to the MIPI Software WG. 352

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

18 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

This page intentionally left blank.

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 19

Public Release Edition

Detailed Technical Questions 353

2.9 Support for Optional I3C HCI Features

Q9.1 Which optional Host Controller features should an implementer support?

While the choice of which optional features to support will depend on the specific use case, the MIPI Software 354

WG recommends that implementers should choose to implement support for the following optional Host 355

Controller features: 356

• Combo Transfer Commands efficiently perform more complicated Transfer Commands (e.g., 357

combined Write-then-Read) with a single Command Descriptor (see the I3C TCRI Specification 358

[MIPI06], Section 7.1.2.3). Many common I3C Targets have a register access mechanism that 359

uses Write-then-Read transactions to select a register offset in one phase and then read the register 360

data in the next phase with a Repeated START between the phases. Combo Transfer Commands 361

can be useful in such applications. 362

• If the Host Controller supports Combo Transfer Commands, then field COMBO_COMMAND in 363

register HC_CAPABILITIES will have a value of 1'b1. 364

• Auto-Command (see [MIPI12] Section 6.11) allows the Host Controller to automatically respond 365

to IBI Requests with a given Mandatory Data Byte (MDB) value and initiate a read transfer from 366

the same I3C Target that sent the IBI Request. I3C Targets can use this mechanism (i.e., a Pending 367

Read Notification) to signal the I3C Controller and inform them that it has data bytes to be read. 368

The Auto-Command capability makes this more efficient and offloads this responsibility from the 369

Driver, so the Host Controller can automatically fetch the read data from such I3C Targets. 370

• If the Host Controller supports Auto-Commands, then field AUTO_COMMAND in register 371

HC_CAPABILITIES will have a value of 1'b1. 372

• Debug-Specific registers (see [MIPI12] Section 7.7.7) provide detailed information about the 373

internal operating status of the Host Controller, which can be especially helpful for 374

implementations that support PIO Mode. If present, these registers can be used by the Driver to 375

check the status of ongoing transfers and monitor the current levels of the PIO Queues. 376

• If the Host Controller supports these Debug-Specific registers, then the Host Controller will 377

have an Extended Capability structure of type Debug-Specific (ID = 0x0C). 378

Q9.2 Are Host Controllers required to support optional I3C features such as HDR Modes

or Timing Control modes?

No, these features are optional. A Host Controller implementer may choose not to implement support for any 379

HDR Modes or Timing Control modes. Additionally, a Host Controller implementer is limited to the I3C 380

features that are included in the I3C Specification used (i.e., either the full I3C Specification or the I3C Basic 381

Specification), which defines I3C Bus Controller functionality. 382

If the implementer does not wish to support any HDR Modes or chooses only to implement support for some 383

of the available HDR Modes, then the Host Controller implementation will still be fully functional in SDR 384

Mode. In this case, the Host Controller will reject (i.e., refuse to process) any Transfer Commands that 385

indicate a transfer in any non-supported HDR Modes (see the I3C TCRI Specification [MIPI06], 386

Section 7.1.2) and return a Response Descriptor with value 0xA (NOT_SUPPORTED) in field ERR_STATUS. 387

Register HC_CAPABILITIES (see [MIPI12] Section 7.4.4) will then indicate which, if any, HDR Modes are 388

supported. If no HDR Modes are supported, then fields HDR_DDR_EN and HDR_TS_EN will both have a value 389

of 1'b0. 390

If the implementer does not wish to support any Timing Control modes, then the Host Controller 391

implementation will still support IBIs (In-Band Interrupts) from I3C Targets. In this case, writing to field TS 392

in the DAT entry will have no effect (i.e., the Host Controller will never timestamp any IBIs). 393

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

20 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

Q9.3 Are Host Controllers required to support Standby Controller Mode as a Secondary

Controller?

No, this capability is not always required. However, the use case for a particular Host Controller 394

implementation will typically determine whether a Host Controller needs to act as a Secondary Controller on 395

the I3C Bus. 396

If the Bus is relatively simple and the system does not need to have any other Secondary Controllers on the 397

Bus, then the Host Controller can omit the Secondary Controller logic and not support Standby Controller 398

Mode. In such applications, the Host Controller initializes the Bus (i.e., acts as Primary Controller) and does 399

not pass the Controller Role to any other I3C Devices. If the Host Controller enters a standby mode or low-400

power mode, then it is expected to respond to Bus events, such as IBI Requests and Hot-Join Requests, by 401

waking its system even though it does not relinquish the Controller Role at any time. 402

However, for more complicated applications, the system designer might require one or more Secondary 403

Controller devices on the Bus. These devices might keep the Bus operational in a limited capacity while the 404

Host Controller enters a deep sleep or low-power mode where it cannot respond to Bus events as mentioned 405

previously. Alternately, other applications might rely on special-purpose Secondary Controllers to consume 406

data from other I3C Targets that are acting as sensors and temporarily act as the Active Controller during that 407

time. Both examples would require the Host Controller to support Standby Controller Mode and act as a 408

Secondary Controller while another I3C Device is the Active Controller of the Bus. 409

The various options for Standby Controller Mode (see [MIPI12] Section 6.17) provide a high degree of 410

flexibility for the implementer to choose which capabilities a Host Controller will support, including the 411

following: 412

• Whether the Host Controller is the Primary Controller or can join the Bus later (i.e., by sending a 413

Hot-Join Request in a Secondary Controller Role and respond to a subsequent Dynamic Address 414

Assignment) 415

• Whether the Host Controller can detect the state of the Bus, attempt to determine whether there is 416

currently an Active Controller, and then try to claim the Controller Role if it sees no Active 417

Controller (i.e., use the Dead Bus Recovery mechanism, per [MIPI12] Section 6.18; see also the 418

Error Type DBR method, defined in the I3C Specification Section 5.1.10.1.8) 419

• Whether the Host Controller can initiate a Controller Role Request while it is a Secondary 420

Controller 421

• Whether the Host Controller waits in a ‘primed’ state while it is a Secondary Controller to 422

automatically accept the Controller Role from the current Active Controller, or whether it will 423

refuse to accept the Controller Role (i.e., remain as a Secondary Controller) 424

• Whether the Host Controller optionally responds to other transaction types or CCCs while it is a 425

Secondary Controller, using implementer-defined extensions to Secondary Controller Logic 426

• Whether the Host Controller monitors the Bus for specific CCCs that might be sent by the Active 427

Controller to provide information on other I3C Devices, such as the DEFTGTS and DEFGRPA 428

CCCs 429

When deciding which of these optional capabilities to support, the implementer should consider I3C’s 430

specific application and the specific capabilities and behaviors expected of any other Secondary Controller 431

Devices on the Bus. Implementers should be aware that [MIPI12] Section 6.17 defines the minimum 432

requirements for capabilities that the Host Controller must support, if the implementer chooses to support 433

Standby Controller Mode for any use case. 434

Implementers seeking additional guidance on Standby Controller Mode and optional Secondary Controller 435

capabilities should contact the MIPI Software WG. 436

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 21

Public Release Edition

2.10 Implementation: As a Host Controller Implementer

Q10.1 How many Target Devices can a Host Controller support?

In theory, an I3C Bus is only limited by the maximum per-Device capacitance on SDA and SCL, although 437

capacitance alone is not sufficient to determine the maximum number of Targets or the maximum frequency 438

that can be used to drive transfers on the I3C Bus. The I3C Application Note: General Topics [MIPI05] lists 439

several considerations for the maximum number of Targets. 440

A Host Controller can support a maximum of 32 Targets (both I3C and I2C), limited only by the size of the 441

DAT. This includes all Targets and Virtual Targets, assigned Group Addresses, or any other addressable entity 442

or Device on the I3C Bus. However, implementers may reduce this maximum if an implementation has a 443

DAT with fewer entries. In this case, such a Host Controller would only support a maximum number of 444

addressable entities/Devices equal to the number of DAT entries. 445

Q10.2 How does the Host Controller resolve communication conflicts on the I3C Bus?

Per the I3C Specification, I3C Targets are only allowed to drive the Bus under certain situations. For example, 446

I3C Targets may drive SDA to emit their Dynamic Address into the arbitrable Address Header after a START 447

(but never after a Repeated START). After a START, the I3C Bus reverts to Open-Drain Pull-Up resistor 448

mode for the arbitrable Address Header; thus, the I3C Target that drives a low value (i.e., logic 0) would win. 449

This forms the beginning of an IBI Request, Hot-Join Request, or Controller-Role Request. 450

Note: 451

I3C Targets may also drive SDA when ACKing the Broadcast Address or their own address during 452

the Address Header or while providing data during a read transfer. However, these situations do not 453

cause potential communication conflicts on the I3C Bus. 454

When a Host Controller drives a START to initiate a transaction with an I3C Target, it also conditionally 455

drives the Broadcast Address (i.e., 7'h7E) to give I3C Targets the opportunity to drive their own Dynamic 456

Address or another special address into the arbitrable Address Header. (See also entry Q6.3.) This behavior 457

is configurable (as detailed in the note below). If no I3C Targets use this opportunity to do so, then the Host 458

Controller continues with the transaction as planned: 459

• If the transaction is a Private Read or Private Write transfer in SDR Mode intended for a single 460

Target, then the Host Controller sends a Repeated START followed by the Dynamic Address of the 461

intended Target and waits for the Target to provide ACK. If the intended Target does not provide 462

ACK, this will be interpreted as a NACK. 463

• If the transaction is a Private Write transfer in SDR Mode intended for a Group, then the Host 464

Controller sends a Repeated START followed by the Group Address and waits for one or more 465

Targets in the Group to provide ACK. If no Targets in the Group provide ACK, this will be 466

interpreted as a NACK. 467

• If the transaction is a Generic Read or Generic Write transfer in an HDR Mode, then the Host 468

Controller sends the appropriate ENTHDRx CCC to enter the selected HDR Mode, then initiates 469

the HDR transfer according to the protocol of that HDR Mode. 470

• If the transaction is a CCC, then the Host Controller sends the indicated Command Code and 471

optional Defining Byte and continues with the CCC framing. 472

Note: 473

For CCCs, the Host Controller always drives the Broadcast Address after START, per the CCC 474

framing defined in the I3C Specification (see Section 5.1.9.1). For SDR Private Read or Private Write 475

transfers, the Host Controller determines whether to drive the Broadcast Address after START based 476

on the current value of field IBA_INCLUDE in register HC_CONTROL and on whether the Driver used 477

the Internal Control Command with sub-command 0x2 (Broadcast Address Enable/Disable). The 478

former acts as a global setting for all transactions, while the latter is specific to the operating context. 479

In DMA Mode, the sub-command can be used to specify the configuration for a particular Ring Bundle 480

if multiple Ring Bundles are supported. 481

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

22 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

If an I3C Target does try to drive its Dynamic Address or another special address into the arbitrable Address 482

Header as part of a request, then the Host Controller will conditionally provide either ACK or NACK based 483

on the following factors: 484

• The values of fields CRR_REJECT and IBI_REJECT in that Target’s DAT entry 485

• The value of field CREDIT_COUNT in that Target’s DAT entry, if IBI credit counting is supported 486

and enabled 487

• The value of field HOT_JOIN_CTRL in register HC_CONTROL, if the special Hot-Join Address 488

(7'h02) is received in the Address Header 489

• In PIO Mode, whether the IBI Queue is too full to accept a new IBI Status Descriptor that would 490

report the status of the incoming request 491

• In DMA Mode, whether the appropriate IBI Status Ring is too full to accept a new IBI Status 492

Descriptor that would report the status of the incoming request 493

• Whether the Host Controller has been halted for any other reason 494

Q10.3 How and when should implementers support Device Context in system memory?

For some implementations, the Host Controller will use Host system memory for the DAT entries, the DCT 495

entries, or both. This requires the Host Controller to support the DMA capability into a region of the Host 496

system memory, and it also requires the Host’s system Bus to support such DMA requests to read from or 497

write into this memory region. It is the Driver’s responsibility to calculate the total amount of memory needed 498

for all such tables the Host Controller expects to store in the Device Context memory and allocate a region 499

of the Host system memory that is sufficiently large to hold all entries. 500

As part of Host Controller initialization, the Driver programs the base address of this Device Context memory 501

into registers DEV_CTX_BASE_LO and DEV_CTX_BASE_HI (see [MIPI12] Section 7.4.19 and Section 7.4.20). 502

If Scatter-Gather mode is supported, then the Driver configures this memory region to use Scatter-Gather 503

mode by programming register DEV_CTX_SG (see [MIPI12] Section 7.4.21) if the Device Context memory 504

region is not a contiguous block (per [MIPI12] Section 6.2.1). 505

If a Host Controller does not support the DAT and/or the DCT in regular registers, then it is required to 506

support Device Context in Host system memory. This option is selected by the implementer (i.e., it is not a 507

run-time configuration choice made by the Driver). 508

• If the DAT is not supported in regular registers, then each DAT entry takes 2 DWORDs of Host 509

system memory. 510

• The entire DAT will consume several DWORDs equal to 2 times the number of DAT entries 511

(per field TABLE_SIZE in register DAT_SECTION_OFFSET). The DAT entries will be contiguous 512

and arranged in ascending order. 513

• Within each such DAT entry, the DWORDs are stored with Bits[31:0] in the first DWORD and 514

Bits[63:32] in the second DWORD. 515

• If the DCT is not supported in regular registers, then each DCT entry takes 4 DWORDs of Host 516

system memory. 517

• The entire DCT will consume several DWORDs equal to 4 times the number of DCT entries 518

(per field TABLE_SIZE in register DCT_SECTION_OFFSET). The DCT entries will be contiguous 519

and arranged in ascending order. 520

• Within each such DCT entry, the DWORDs are stored with Bits[31:0] in the first DWORD, 521

Bits[63:32] in the second DWORD, Bits[95:64] in the third DWORD, and Bits[127:96] in the 522

fourth DWORD. 523

• Field TABLE_INDEX in register DCT_SECTION_OFFSET will effectively point to a specific DCT 524

entry in Host system memory. 525

• If both of the above are true (i.e., if both DAT and DCT are not supported in regular registers), 526

then the Host Controller will expect both such tables to be stored in Host system memory. 527

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 23

Public Release Edition

If the Host Controller supports the DAT in Device Context memory, then the implementer should also 528

consider which DAT fields might need to be cached as internal state, as it is likely infeasible for the Host 529

Controller to rely entirely on Host system memory access to read the DAT entries when needed. The DAT is 530

crucial for Target-related transactions, which is pertinent if the Host Controller wishes to reduce latency when 531

performing DAT lookups in response to an incoming IBI Request or Controller Role Request. A non-cached 532

implementation would require the Host Controller to slow or stall the I3C Bus clock while it performed a 533

fresh read from Host system memory, examined the DAT entries received from Device Context memory, 534

compared the incoming Dynamic Address against all DAT entries, and then decided to take the appropriate 535

action. Similarly, a non-cached implementation would require the Host Controller to perform a fresh read 536

from Host system memory when initiating any Transfer Command, as it would need to fetch the Target’s 537

Dynamic Address from the DAT entries (which did not reside locally in registers) to drive the Transfer 538

Command on the I3C Bus. 539

To mitigate this situation, the implementer must determine how the Host Controller caches some internal 540

state derived from the DAT fields that were previously read from Device Context memory. While the I3C 541

HCI Specification does not specify the caching method and the frequency of updates to the cached state, 542

there is a special Internal Control Command type that allows the Driver to tell the Host Controller when it 543

should update its cached state based on changes that the Driver might have made to DAT entries in system 544

memory. Refer to [MIPI12] Section 8.4.2.3 for more details on the Device Context Update sub-command. 545

The caching concerns do not directly affect the DCT if it resides in Device Context memory. Since the Host 546

Controller only writes to the DCT (and never reads from it) during Dynamic Address Assignment with 547

ENTDAA, no internal state needs to be cached. The Host Controller can simply write to the DCT appropriately 548

as and when it reports information on the I3C Targets that successfully complete Dynamic Address 549

Assignment. 550

Q10.4 If the Host Controller supports both the DAT and DCT in Device Context memory,

how is this memory partitioned?

Refer to the previous entry, Q10.3, for more context. If the Host Controller supports both the DAT and the 551

DCT in Device Context memory, then the DWORDs for all DAT entries are stored first (i.e., starting at byte 552

offset 0x0) and are stored consecutively in the Device Context memory region. This means that the first DAT 553

entry (i.e., entry #0) starts at byte offset 0x0 and takes the first 2 DWORDs; the second DAT entry (i.e., entry 554

#1) starts at byte offset 0x8 and takes the next 2 DWORDs, and so on. After the last DAT entry (i.e., as 555

determined by the number of DAT entries, reported by field TABLE_SIZE in register DAT_SECTION_OFFSET), 556

the DWORDs for all DCT entries are stored contiguously, starting at byte offset 557

DAT_SECTION_OFFSET.TABLE_SIZE × 8, with DCT entry taking 4 DWORDs. 558

For example, if the Host Controller supported a maximum of 32 DAT entries, the first DAT entry would start 559

at byte offset 0x0, the second DAT entry would start at byte offset 0x8, and so on; the last DAT entry would 560

start at byte offset 0xF8. After the last DAT entry, the first DCT entry would start at byte offset 0x100, the 561

second DCT entry would start at byte offset 0x110, and so on. 562

If the Host Controller only supports one such table in Device Context memory (i.e., either the DAT or the 563

DCT, but not both), then the first entry starts at byte offset 0x0. 564

Note: 565

These requirements were not clearly stated in I3C HCI v1.1 and earlier. 566

Q10.5 What is the recommended number of entries for the DAT and the DCT?

The minimum number of entries for each such table is 1, although this is not a practical or efficient 567

configuration. For general use cases, a Host Controller should have at least 16 DAT entries and at least 4 568

DCT entries, although more is usually better. 569

Some considerations: 570

• As noted in entry Q10.1, the number of DAT entries directly affects how many I3C and Legacy 571

I2C Target Devices can be addressed with Transfer Commands, as well as how many I3C Targets 572

can send IBI Requests or Controller Role Requests that the Host Controller is expected to 573

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

24 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

acknowledge. While it is theoretically possible for a Host Controller to support more Targets than 574

the DAT entries can accommodate, this would require the Driver to swap DAT entries in and out 575

of system memory based on which Targets it expects to use for Transfer Commands. This would 576

not be an efficient use of Host resources and might even block the reception of IBI Requests and 577

Controller Role Requests. The MIPI Software WG recommends that the Host Controller support at 578

least as many DAT entries as Targets (i.e., addressable entities or Devices) on the Bus, with a few 579

extras to be used for Dynamic Address Assignment after a Hot-Join Request. 580

• The number of DCT entries directly affects how many I3C Target Devices can be detected and 581

assigned a Dynamic Address with a single Address Assignment Command (see Section 8.4.1.1). It 582

is safe for a Host Controller to have fewer DCT entries than DAT entries. However, the Driver 583

must be aware of this limitation and only submit Address Assignment Commands that do not 584

exceed the number of DCT entries. If the I3C Bus has more I3C Targets than DCT entries, the 585

Driver will need to submit multiple Address Assignment Commands, assign Dynamic Addresses 586

in stages, and only initiate the next stage once it consumes the data reported by the Host Controller 587

for any I3C Targets that were detected in the previous stage. Since the DCT stores transient data 588

that the Driver should read immediately, this will impact efficiency but will not affect how many 589

I3C Targets can be used with Dynamic Address Assignment. In theory, a DCT with the minimum 590

size (i.e., only 1 entry) is still functional if the Driver initiates N Address Assignment Commands 591

(i.e., one for each expected I3C Target with field DEV_COUNT set to 1) where N is equal to the 592

number of I3C Targets. However, this is not as efficient as a DCT with more entries, where the 593

Driver can assign more than 1 Dynamic Address per Address Assignment Command. The MIPI 594

Software WG recommends that the Host Controller support at least 4 DCT entries, although this 595

depends on the use case. 596

• If the Host Controller uses the DAT or the DCT in Device Context memory (see entries Q10.3 and 597

Q10.4 for context), then the Host Controller should generally not restrict the number of entries in 598

such tables, as the size is only limited by available Host system memory. However, the Host 599

Controller will still need to check the incoming Dynamic Address for an IBI Request or Controller 600

Role Request with lookup logic that searches for this Dynamic Address across all valid DAT 601

entries. In some cases where logic space is at a premium, the implementer may wish to simplify 602

the lookup logic by restricting the number of DAT entries that can be supported (i.e., searched in 603

parallel). 604

Q10.6 What factors should be considered when deciding whether to implement support

for PIO Mode?

In general, PIO Mode works well for smaller integrations, such as micro-controllers, application processors, 605

or FPGAs, where the Driver can dedicate enough cycles to interact with the Host Controller, as the Driver 606

must be more directly involved with the transactions that it sends to the Host Controller. The Driver must be 607

able to do this with appropriately low latency. 608

PIO Mode is also generally suitable for space-constrained systems: A Host Controller implementation that 609

only supports PIO Mode should require considerably less logic and does not require the Host to support DMA 610

capability on its system Bus. If a Host system does not support DMA capability on its system Bus, then PIO 611

Mode is the only possible operating mode for such a Host Controller implementation. 612

However, PIO Mode requires a high level of interaction with low latency. The Host Controller will likely 613

send many interrupts that need to be handled by the Driver during transactions. If the Driver does not respond 614

promptly (which could be caused by multitasking within the Host’s processing core), then the Driver’s 615

delayed interrupt handling could negatively impact the Host Controller’s operations and I3C Bus 616

transactions. For example, if the Driver cannot service the PIO Queues promptly or if the PIO Queues are 617

not sized appropriately for the use case and expected latency, then the Host Controller could see data 618

overflow/underflow errors during Transfer Commands or IBI data payloads, as well as possible errors due to 619

Command Sequence stalls or timeouts. 620

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 25

Public Release Edition

Q10.7 What factors should be considered when deciding whether to implement support for

DMA Mode?

In general, DMA Mode works well for medium-to-large implementations that can afford the additional logic 621

and buffers needed to handle the higher level of automated transaction processing within the Host Controller. 622

For some general computing use cases with an OS, the Driver (typically, software running on the Host) cannot 623

reliably service frequent Host Controller interrupts (as PIO Mode requires) to prevent negative impacts such 624

as overflow/underflow and stalls/timeouts, among others. For such systems, DMA Mode is more efficient 625

from the perspective of the Host, as it allows the Driver to offload more of the transaction processing to Host 626

Controller logic. 627

DMA Mode is also more suitable for systems that could have multiple Drivers (e.g., firmware agents or other 628

execution contexts) that interact with different Targets on the I3C Bus. If the Host Controller supports more 629

than one Ring Bundle, then each Driver (or agent/context) can interact solely with its own assigned 630

Command/Response Rings and let the Host Controller logic handle the arbitration and serialization. 631

However, DMA Mode requires more logic and additional buffer memories to handle the transaction 632

processing of the Command/Response Ring Pair and the arbitration and serialization across multiple Ring 633

Pairs if multiple Ring Bundles are supported. In this case, offloading this work to the Host Controller comes 634

with more cost and complexity. DMA Mode also requires DMA capability on the Host’s system Bus. As a 635

result, the Driver must spend more effort to manage the allocated memory for the Rings; typically, these are 636

allocated in memory that the Driver can access (i.e., kernel memory), which could be limited in some systems, 637

depending on the OS implementation. 638

Additionally, if the Host system does not support DMA capability on its system Bus, then DMA Mode cannot 639

be used for such a Host Controller implementation (see Q10.6). 640

Q10.8 Can a Host Controller implement support for both PIO Mode and DMA Mode?

Yes, if the Host system Bus supports DMA (see Q10.7). However, this requires additional complexity, as the 641

logic for both operating modes must be present even though only one operating mode can be active at a time. 642

This means that the PIO Mode registers will not be used when DMA Mode is selected and vice versa. 643

Additionally, the Host Controller must support mode switching when the Driver writes to the 644

MODE_SELECTOR field of the HC_CONTROL register. 645

Q10.9 How much of a Host Controller implementation must be hardware or firmware?

The I3C HCI Specification does not specify which Host Controller behaviors should be handled by dedicated 646

hardware logic or by firmware running on a processing core or engine. However, it is generally expected that 647

lower-level behaviors involving Bus Controller logic should be done in dedicated hardware logic, as it is not 648

typically efficient to implement the Bus Controller logic via bit-bang due to higher latency. Since an I3C Bus 649

Controller is required to react quickly to changing states on the SDA and SCL lines, dedicated hardware logic 650

is preferable for the lower-level operations that interact with the I3C Bus. 651

With that said, it is possible for the upper-level portion of a Host Controller (e.g., the Host-facing interface) 652

to be implemented either by dedicated hardware logic or by firmware running on a processing core adjacent 653

to the Bus Controller logic. In some implementations, the processing core could utilize programmable logic 654

(e.g., FPGA). If an implementer wishes to use a split hardware/firmware implementation, then the 655

implementer must ensure that the firmware can reliably and quickly react to events generated by the Bus 656

Controller logic that drives operations onto the I3C Bus, and the Host Controller implementation’s latency 657

and performance would not be compromised. 658

Q10.10 How should a Host Controller’s registers and queues be implemented?

The I3C HCI Specification does not specify how the registers and queues should be implemented. Host 659

Controller implementers are free to use various implementation methods for the registers and queues if the 660

resulting implementation conforms to the behaviors and expectations defined in the I3C HCI Specification. 661

In most cases, certain configuration registers would typically be implemented as flip-flop structures, as these 662

would need to be frequently accessed internally. In other cases, some registers and queues could be 663

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

26 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

implemented as other memory-based structures that are accessed via an internal interface (such as register 664

files, SRAMs, or similar). 665

If PIO Mode is supported, then many of the PIO Queues could be implemented as flip-flops or other memory-666

based structures. The implementer should determine which structure makes the most sense for the 667

implementation based on the level of complexity, the size of the structure, the latency required to use the 668

queue, and the performance characteristics of the memory structures available on the specific manufacturing 669

process. The implementer is also free to decide whether a queue that uses a memory structure, such as an 670

SRAM, will need to be buffered internally for performance and latency reasons. However, this internal 671

buffering is not defined or required by the I3C HCI Specification, and it would not be visible to the Driver 672

via the register interface. In some cases, an implementer might choose to use a single shared memory structure 673

for multiple queues and use internal buffers for certain elements to mitigate latency issues caused by the use 674

of a shared memory structure. 675

Q10.11 What I3C data transfer speeds are required, and how should a Host Controller

support them?

The I3C HCI Specification and I3C TCRI Specification provide guidelines on the data transfer rates that a 676

Host Controller should support. In SDR Mode, there are 5 standard SDR speeds, from SDR0 to SDR4, which 677

can be specified in the MODE field of the Transfer Command. 678

The following table from the I3C TCRI Specification (in [MIPI06] Section 7.1.1.1) shows the guidance for 679

the maximum data transfer speeds for each such SDR speed. 680

Maximum Values for I3C SDR Data Transfer Speeds 681

MODE

Field

Value

Listed Speed Maximum Sustainable Data Rate

0x0 I3C SDR0 12.5 MHz, Standard SDR Speed, fSCL Max

0x1 I3C SDR1 8 MHz

0x2 I3C SDR2 6 MHz

0x3 I3C SDR3 4 MHz

0x4 I3C SDR4 2 MHz

Per these guidelines, the SDR0 speed should be the fastest data rate and is typically the maximum sustainable 682

data rate on the I3C Bus (i.e., 12.5 MHz, based on parameter fSCL Max, which is defined in the I3C 683

Specification). However, the implementer may choose to reduce this to a lower data rate (e.g., 10 MHz) for 684

a particular use case, especially if the I3C Bus has a more complex topology or higher overall capacitance 685

and would be unable to use the maximum data rate of 12.5 MHz for a particular system. In special cases, the 686

clock provided within the overall system might not allow the Host Controller to use the maximum sustainable 687

data rate of 12.5 MHz for the SDR0 speed, and a slightly lower data rate could be used. Such a Host Controller 688

will still properly drive I3C transactions on the Bus at the lower data rate, albeit with reduced efficiency. The 689

SDR1 through SDR4 speeds are expected to be slower than the SDR0 speed, with each successively slower 690

than the preceding speed, and the guidelines provide recommended data rates for each of these speeds. 691

However, implementers are not constrained to use these specific data rates for the SDR0 through SDR4 692

speeds: The actual data rates will depend on the application and on the implementer’s choice of clock logic 693

used by the Host Controller or the clock provided within the overall system (i.e., the product that integrates 694

the Host Controller). 695

For example, assume that a Host Controller implementation receives a 100 MHz clock signal from its system 696

and internally divides this clock signal by various integers to derive each specific data rate used by its Bus 697

Controller logic for transfers that can use the SDR0 through SDR4 speeds. In this example, the SDR0 speed 698

can operate at the recommended value (also the maximum value) of 12.5 MHz, since this can be achieved 699

with an integer divider of 8. However, for the SDR1 speed, a data rate of 8 MHz would not be possible, as 700

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 27

Public Release Edition

there is no integer divider for 100 MHz that results in 8 MHz. In this case, the implementer could choose to 701

use an integer divider of 12 or lower (which is not recommended, as that would produce a data rate higher 702

than 8 MHz) but instead should choose another integer divider, such as 13 (i.e., to produce a data rate of 703

7.6923 MHz), 14 (i.e., to produce a data rate of 7.1428 MHz), or higher. Similarly, the other data rates for 704

the SDR2 through SDR4 speeds would depend on the available integer dividers that produce data rates that 705

should approach but not exceed the guidance on maximum values. 706

Alternately, assume that a Host Controller implementation uses a tick-counter approach to derive data rates. 707

Using the base clock as a reference, it would need to determine the number of clock ticks for the number of 708

High and Low cycles for the data rate of each SDR speed. For example, if the Host Controller receives a 709

100 MHz clock signal from its system, it can use 4 clock ticks for the High cycle and 4 clock ticks for the 710

Low cycle to achieve an effective data rate of 12.5 MHz with a 50/50 duty cycle for the SDR0 speed. The 711

Host Controller can then use additional ticks for the High and Low cycles of the SDR1 through SDR4 speeds 712

if each produces a valid duty cycle. 713

Regardless of the provided clock or the method for deriving the data rates, the Host Controller must drive all 714

I3C transactions with a valid duty cycle that is acceptable to I3C Devices and any Legacy I2C Devices that 715

might be present, such as for a Mixed Bus. If this is a Mixed Bus, then the Host Controller should also ensure 716

that the High-cycle time of I3C transactions is short enough to be filtered out by the 50 ns spike filter of such 717

Legacy I2C Devices (i.e., since Legacy I2C Devices should not see any traffic addressed only to I3C Devices). 718

This typically means that the Low-cycle time in the SDR1 through SDR4 speeds will be successively greater 719

as the data rate is decreased. 720

While the I3C HCI Specification does not define the method for exposing the effective data rates that will be 721

used for I3C transactions, implementers should consider exposing these timing parameters in registers within 722

an implementer-defined Extended Capability structure. This allows the Driver to read the timing parameters 723

and know the effective data rates for the SDR0 through SDR4 speeds. In some cases, it might also be advised 724

to allow the Driver to adjust the duty cycle and effective data rate for each speed by providing writeable 725

register fields. Since the SDR0 through SDR4 speeds only apply to the Push-Pull phase of an I3C transaction 726

in SDR Mode, the timing parameters for HDR transactions and the Open Drain phases of SDR transactions 727

should also be exposed by such implementer-defined registers. 728

Q10.12 How does a Host Controller advertise which types of Internal Control Commands

are supported?

Starting with I3C HCI v1.1, implementers are required to support register INT_CTRL_CMD_EN (see [MIPI12] 729

Section 7.4.16). This register has a read-only field to indicate the specific sub-commands of the Internal 730

Control Command Descriptor that the Host Controller supports. 731

Certain Internal Control Command sub-commands are required to be supported, and other sub-commands 732

are conditionally required based on other Host Controller capabilities. While these requirements were not 733

clearly stated, and the register above was not defined, in I3C HCI v1.0, later versions of the I3C HCI 734

Specification state these requirements clearly. 735

• Sub-Command 0x1 (Ring Bundle Lock) is conditionally required: If the Host Controller supports 736

DMA Mode with at least two Ring Bundles, then it shall support this sub-command. 737

• Sub-Command 0x2 (Broadcast Address Enable/Disable) is always required. 738

• Sub-Command 0x3 (Device Context Update) is conditionally required, if the Host Controller 739

supports Device Context (i.e., if the DAT entries are expected to be read from Host system 740

memory). 741

• Sub-Command 0x4 (Target Reset Pattern) is always required. This sub-command was added in 742

I3C HCI v1.1. 743

• Sub-Command 0x5 (Controller SDA Recovery or Bus Reset Procedure) is always required. This 744

sub-command was added in I3C HCI v1.1. 745

• Sub-Command 0x6 (Enable End Transfer Termination and HDR Mode Configuration) is 746

conditionally required: If the Host Controller supports HDR Modes or Monitoring Devices that 747

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

28 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

rely on the ENDXFER CCC for configuration or activation, then it shall support this sub-748

command. This sub-command was added in I3C HCI v1.2. 749

• Sub-Command 0x7 (Controller Role Handoff Procedure with GETACCCR CCC) is conditionally 750

required: If the Host Controller supports Standby Controller Mode, then it shall support this sub-751

command. This sub-command was added in I3C HCI v1.2. 752

• Sub-Command 0xD (Attempt Dead Bus Recovery) is conditionally required: If the Host 753

Controller supports the Dead Bus Recovery Mechanism, then it shall support this sub-command. 754

This sub-command was added in I3C HCI v1.2. 755

Implementers should consult Section 8.4.2 and its sub-sections for more details. 756

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 29

Public Release Edition

2.11 Implementation: As a Software Developer

Q11.1 Where are the definitions for Transfer Command and Transfer Response

structures?

In I3C HCI v1.0 and v1.1, the Transfer Commands and Transfer Responses were normatively defined within 757

Section 8. Starting with I3C HCI v1.2, the Transfer Commands and Transfer Responses are normatively 758

defined in the I3C TCRI Specification. The latest adopted version is I3C TCRI v1.0 [MIPI06]. Note that the 759

Transfer Commands and Transfer Responses supported by I3C TCRI v1.0 have the same definitions as in 760

I3C HCI v1.1. 761

Developers should refer to the I3C HCI and I3C TCRI Specifications to fully understand all Host Controller 762

behaviors with respect to Transfer Commands and Transfer Responses. In general, I3C HCI defines the how 763

– how the Host Controller interacts with its Host to receive Transfer Commands and generate Transfer 764

Responses – and the I3C TCRI defines the what – what I3C Bus Controller behavior is expected when 765

processing either a single Transfer Command or a sequence of Transfer Commands. 766

Q11.2 Are there any companion MIPI I3C Specifications that enable software development

or system integration?

Yes. The following MIPI Specifications are expected to enable software development and system integration: 767

• MIPI Specification for Discovery and Configuration (DisCo), v1.0 [MIPI03] 768

Describes a standardized device discovery and configuration mechanism for interfaces based on 769

MIPI Specifications, which can simplify component design and system integration. Also oriented 770

to application processors. 771

• MIPI DisCo Specification for I3C, v1.1 [MIPI04] 772

Allows operating system software to use Advanced Configuration and Power Interface (ACPI) 773

structures to discover and configure the I3C Host Controller and attached I3C Devices in 774

ACPI-compliant systems. Also oriented to application processors. 775

In addition to these MIPI Specifications, the MIPI I3C WG has released several application notes that can 776

help ASIC hardware developers, system designers, and others working in the more deeply embedded I3C 777

Devices. 778

Q11.3 Are there software libraries available for I3C?

Yes. Core I3C infrastructure has been added to the Linux Kernel as part of the I3C subsystem. The I3C 779

subsystem also includes Drivers for several I3C Controller Devices and IP core implementations, including 780

MIPI I3C HCI-compliant Host Controllers (see [MIPI09]). 781

The current list of Linux Kernel Patches for the I3C subsystem can be accessed via [LINX01]. 782

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

30 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

2.12 Operation in PIO Mode

Q12.1 What has changed in I3C HCI v1.1 relating to PIO Mode?

In I3C HCI v1.0, the queue threshold control register (QUEUE_THLD_CTRL) had inconsistent definitions for 783

the various threshold fields. For example, some threshold fields were defined to be “zero-based,” meaning 784

that a value of 0x0 defined a threshold of 1 or more entries, a value of 0x1 defined a threshold of 2 or more 785

entries, and so on. However, other threshold fields were defined with a value of 0x0 to indicate either zero 786

(i.e., no) or more entries or an empty queue. This confused implementers. In I3C HCI v1.1, the definitions 787

for the queue threshold fields were made consistent. In some cases, this means that a value of 0x0 is no longer 788

a valid value, since it did not make sense in order to trigger an event. 789

In I3C HCI v1.0, if a Host Controller supported both PIO Mode and DMA Mode, the selected operating mode 790

was implicitly determined based on the number of enabled Ring Bundles. For example, if no Ring Bundles 791

were enabled, then the Host Controller logic would use PIO Mode. However, if the Host enabled at least one 792

Ring Bundle, then the Host Controller would automatically switch into DMA Mode. This confused 793

implementers and software developers. In I3C HCI v1.1, an explicit control field was added to register 794

HC_CONTROL to select the operating mode. 795

Additionally, an extensive Theory of Operation section covering PIO Queue Management was added to 796

explain the fundamental aspects of PIO Mode operation and how the Host should interact with the PIO 797

Queues to drive transfers. 798

Q12.2 What has changed in I3C HCI v1.2 relating to PIO Mode?

An error in I3C HCI v1.1 (corrected by Errata 01) referred to the wrong field in the definition of register 799

PIO_INTR_STATUS. The descriptive text for field CMD_QUEUE_READY_STAT incorrectly referred to field 800

RESP_EMPTY_BUF_THLD when it should have referred to field CMD_EMPTY_BUF_THLD. This error was also 801

corrected in I3C HCI v1.2. 802

I3C HCI v1.2 also gives implementers more options to flexibly define various PIO Queues to suit the 803

application. These alternate PIO Queue sizes are now indicated in register ALT_QUEUE_SIZE (new for this 804

version). However, if implementers choose not to use these options, then this register can be defined with a 805

value of 0x0 (i.e., all fields have zero values), which is backwards compatible with I3C HCI v1.1. 806

• In I3C HCI v1.1 and earlier, the sizes of the Command Queue and the Response Queue were 807

always linked (i.e., both queues always had the same number of entries). While this worked well 808

for many use cases, other specialized use cases could benefit from allowing these queues to be 809

sized independently. In I3C HCI v1.2, the implementer may choose to define these queues with 810

different sizes. Then, the implementer must indicate the actual defined size of the Response Queue 811

in register ALT_QUEUE_SIZE and indicate that the Response Queue has a different size than the 812

Command Queue (where the size is still defined by register QUEUE_SIZE). 813

• In I3C HCI v1.1 and earlier, the size of the IBI Queue is limited to a maximum of 255 DWORDs. 814

While this worked well for many use cases, other specialized use cases could benefit from a larger 815

IBI Queue, particularly systems that frequently use IBIs to communicate I3C Target status and 816

longer data payloads using Auto-Command. For such use cases, a larger IBI Queue allows the 817

Driver more time to consume the data, particularly systems with higher latency in processing 818

interrupts. In I3C HCI v1.2, the implementer may choose to define a larger IBI Queue, up to a 819

maximum of 2040 DWORDs. Then, the implementer must indicate this in register 820

ALT_QUEUE_SIZE, which effectively multiplies the value of field IBI_STATUS_SIZE in register 821

QUEUE_SIZE by 8. 822

Additionally, I3C HCI v1.2 adds a new PIO_CONTROL register that gives the Driver control over the operation 823

of the PIO Queues, providing similar functionality to what the RING_CONTROL register provides for each 824

Ring Bundle. 825

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 31

Public Release Edition

2.13 Backwards Compatibility with I2C

Q13.1 Is an I3C Host Controller backwards compatible with I²C? Can I3C and I²C Devices

coexist on the same Bus?

Yes. Most Legacy I²C Target Devices can be operated on an I3C Bus, provided they have a 50 ns spike (glitch) 826

filter and do not attempt to stall the clock. Such use will not degrade the speed of communications to I3C 827

Targets; it will require decreased speed only when communicating with the I²C Targets. 828

I3C supports Legacy I2C Target Devices using Fast-mode (Fm, 400 KHz) and FastMode+ (Fm+, 1 MHz) 829

with the 50 ns spike filter. It does not support the other, faster I2C modes, I2C Devices that lack the spike 830

filter, or I2C Devices that stretch the clock. 831

I3C Host Controllers can communicate with Legacy I²C Targets on the Bus if such devices meet these 832

requirements as defined in the I3C Specification, Section 5.1.1.1. During initialization, the Driver must write 833

1'b1 to field I2C_DEV_PRESENT in register HC_CONTROL (see [MIPI12] Section 7.4.2). 834

If the Bus has one or more such Legacy I²C Targets (i.e., is a Mixed Bus), the Host Controller must initiate 835

transactions and use an appropriate data rate and duty cycle, depending on whether it is addressing an I3C 836

Target or a Legacy I²C Target. For example, when addressing I3C Devices, the Host Controller must observe 837

the timing requirements and ensure that the High cycle of SCL is not longer than 50 ns, as that would allow 838

the transaction to pass through the Legacy I²C Target’s 50 ns spike filter. Similarly, when addressing Legacy 839

I²C Targets, the Host Controller must ensure that the data rate and duty cycle are compatible with I²C Targets. 840

To ensure the Host Controller knows the difference, the Driver must write the appropriate value into the 841

DEVICE field of the DAT entry for the Target (see [MIPI12] Section 8.1). 842

Note: 843

Certain HDR Modes may not be used on a Mixed Bus. Additionally, some I3C timing parameters 844

need to accommodate the presence of Legacy I²C Devices on a Mixed Bus. Consult the I3C 845

Specification Section 5.1.2.4 for more details. 846

Additionally, the Host Controller must account for the Static Address of each Legacy I²C Target device on 847

the Bus and ensure that it does not assign that same Dynamic Address to any I3C Targets. If the system has 848

a configuration resource (e.g., DisCo for I3C) that contains the list of known Legacy I²C Targets on the Bus, 849

then the Driver should read that data and account for such devices. Otherwise, it must acquire that data on 850

Legacy I²C Targets from another source. The Driver will then go through the initialization procedure with 851

full awareness of all Legacy I²C Targets on the Bus before it sends any Address Assignment Commands as 852

part of Bus initialization. 853

Note: 854

I3C Buses do not support Legacy I2C Controller Devices or any Legacy I2C Devices that attempt to 855

act as the Controller and drive the SCL line (i.e., when arbitrating for control to drive transactions). 856

Such Devices cannot share the same Bus with I3C Devices. I3C Buses also do not support any 857

Legacy I2C Devices that use clock stretching, since the SCL line is owned by the Active Controller 858

and driven in Push-Pull mode. 859

Q13.2 Does the Driver need to take any additional steps if the Bus has I3C Targets that

initially act as Legacy I²C Targets?

Possibly. Such I3C Targets might be used on either an I3C Bus or a Legacy I²C Bus, and when powered on, 860

they will have a 50 ns spike filter enabled by default and will not inherently know whether they are on an 861

I3C Bus. As a result, they will not know whether they can pull SDA Low to initiate a Hot-Join Request, since 862

that capability is not supported on Legacy I²C Buses. As a result, the Primary Controller must send a START 863

followed by the Broadcast Address (7'h7E) at a data rate that will be seen by such an I3C Device with its 864

50 ns spike filter enabled (i.e., the default state). (Refer to the I3C Specification Section 5.1.2.1.1 for more 865

details.) 866

Host Controllers are not required to do this automatically when initialized by the Driver. If a Host Controller 867

does this automatically, then no additional steps must be taken. However, if this does not happen, then the 868

Driver needs to send a Transfer Command using a DAT index for an imaginary Legacy I²C Device (i.e., a 869

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

32 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

DAT entry that is temporarily configured with a dummy address and field DEVICE set to 1'b1) for any valid 870

Broadcast CCC (such as ENEC or DISEC). The Transfer Command should use a safe data rate (i.e., field 871

MODE set to 0x0, for I²C Fast Mode at 400 KHz) to ensure that the Broadcast CCC is sent slowly enough to 872

pass through the enabled spike filter of such an I3C Target. 873

If some other I3C Target (i.e., one that knows it is on an I3C Bus by default) raises a Hot-Join Request that 874

wins arbitration over the Broadcast Address (7'h7E), this will take priority, and the other I3C Targets will not 875

see the START, 7'h7E/W pattern that informs them they are definitely on an I3C Bus. As a result, the Driver 876

should resend the same Transfer Command if it receives any Hot-Join Request notifications to ensure that 877

the other I3C Targets can clearly see the START, 7'h7E/W pattern. 878

Note: 879

Implementers may choose to add support for this initialization step in hardware to be activated 880

automatically when the Driver enables and initializes the Host Controller before processing any 881

Transfer Commands. 882

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 33

Public Release Edition

2.14 Dynamic Address Assignment and Group Address Assignment

Q14.1 Can the Host Controller detect a PID collision during Dynamic Address Assignment

with the ENTDAA CCC?

Collisions are not possible when each I3C Target Device has its own Manufacturer ID and unique part 883

number. If more than one instance of the same Target is used on a given I3C Bus, then each such instance 884

must have a separate instance ID; otherwise, there would be a collision. Alternately, if the Driver previously 885

sent a Transfer Command with the ENTTM Broadcast CCC to enter Vendor Test Mode (per Section 5.1.9.3.8 886

of the I3C Specification [MIPI10][MIPI11]), and if two or more I3C Target Devices chose the same random 887

32-bit value, then a collision would be possible (although unlikely). 888

If the Host Controller knows the number of I3C Targets on the I3C Bus (either from prior knowledge or by 889

reading the system’s configuration, such as from a DisCo resource), then it can detect this condition: The 890

number of Dynamic Addresses assigned would be less than the expected number of Targets. If the Driver 891

detects this, then it can take steps to resolve such collisions, for example by resetting all Dynamic Addresses 892

with the RSTDAA CCC and restarting the process by re-sending the ENTTM Broadcast CCC to exit the test 893

mode (if applicable) or by eventually declaring a system error after a set maximum number (e.g., 3) of such 894

attempts fail. 895

However, if the Host Controller does not know the number of I3C Targets in advance, then it cannot detect 896

PID collisions, meaning that multiple I3C Targets that return the same PID + BCR + DCR values during the 897

Dynamic Address Assignment process (with the ENTDAA CCC) will effectively be assigned the same 898

Dynamic Address. This will cause communication errors on the I3C Bus. 899

Q14.2 Does the Host Controller require any special support for Group Addressing?

No, Group Addresses are implicitly supported. Each assigned Group Address effectively needs to be treated 900

as its own Target, meaning that the Host must allocate one DAT entry per Group Address in addition to other 901

DAT entries for each Target’s Dynamic Address. Once a DAT entry is set up for a Group, and once a Group 902

Address is assigned to one or more Targets with the SETGRPA CCC (which the Driver must enqueue via 903

Transfer Commands), the Driver can subsequently send Transfer Commands using the DAT index for that 904

assigned Group Address. 905

Note: 906

Per the I3C Specification, all transactions addressed to a Group Address must be Write transfers, as 907

Read transfers cannot be addressed to Group Addresses. Additionally, each I3C Target must first 908

have an assigned Dynamic Address before it can be assigned any Group Addresses. 909

Q14.3 How does the use of any Address Assignment CCCs affect existing DAT entries?

The Host Controller does not update the contents of DAT entries when it sends any such Address Assignment 910

CCCs on the I3C Bus. This includes the Address Assignment Commands (i.e., for ENTDAA or SETDASA 911

CCCs) and Transfer Commands that send any other such CCCs (e.g., for SETNEWDA, SETAASA, RSTDAA, 912

SETGRPA, or RSTGRPA CCCs). It is the Host’s responsibility to manage/update the DAT entries before 913

sending new Transfer Commands to I3C Targets that are affected by Address Assignment CCCs. 914

Q14.4 How can an I3C Target’s assigned Dynamic Address be changed?

If the I3C Target supports the SETNEWDA CCC, then the Driver should first enqueue a Transfer Command 915

with the SETNEWDA CCC. If this succeeds, then the Driver should update the DAT entry by writing the new 916

Dynamic Address into the DYNAMIC_ADDRESS field. 917

Note: 918

Per the I3C Specification, I3C Targets that support the ENTDAA CCC must also support the 919

SETNEWDA CCC. For special I3C Targets that do not support both the ENTDAA and SETNEWDA 920

CCCs, the only way to change the assigned Dynamic Address is to reset by sending either the 921

RSTACT CCC followed by the Target Reset Pattern or by sending the RSTDAA CCC, which affects 922

all I3C Targets (see also Q14.3 and Q14.6). Once this is done, the Driver can assign a different 923

Dynamic Address to that I3C Target using the SETDASA CCC. 924

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

34 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

If the DAT is stored in Device Context memory, then the Driver should subsequently use the Device Context 925

Update sub-command of the Internal Control Command to inform the Host Controller that the DAT entry has 926

been updated (see also Q10.3). Refer to [MIPI12] Section 8.4.2.3 for more details on the Device Context 927

Update sub-command. 928

Q14.5 Should the Driver clear an existing DAT entry if an assigned Dynamic Address or

Group Address is no longer valid?

Yes. The Driver should write the value 7'h00 into the DYNAMIC_ADDRESS field in that DAT entry to mark it 929

as disabled. 930

If the DAT is stored in Device Context memory, then the Driver should subsequently use the Device Context 931

Update sub-command of the Internal Control Command to inform the Host Controller that the DAT entry has 932

been removed (see also Q10.3). Refer to [MIPI12] Section 8.4.2.3 for more details on the Device Context 933

Update sub-command. 934

Q14.6 Does the RSTDAA CCC also clear any assigned Group Addresses?

Yes. If the Driver enqueues a Transfer Command that is the RSTDAA CCC, this will reset all assigned 935

Dynamic Addresses and all Group Addresses for all I3C Targets, per Section 5.1.4.4 of the I3C Specification. 936

However, this does not clear or otherwise disable any DAT entries that contain previously valid Dynamic 937

Addresses and/or Group Addresses. Consequently, all such DAT entries for I3C Targets will point to 938

unassigned Addresses until the Host updates or disables the entries and then subsequently assigns new 939

Dynamic Addresses and optional Group Addresses. 940

Q14.7 How does the RSTGRPA CCC affect existing DAT entries with Group Addresses?

If the Driver enqueues a Transfer Command that is the RSTGRPA CCC, then this will reset the assigned 941

Group Addresses for affected I3C Targets depending on the format of the RSTGRPA CCC that is used. 942

However, this does not clear or otherwise disable any DAT entries that contain previously valid Group 943

Addresses. Consequently, the Host will need to determine which DAT entries for affected Group Addresses 944

must be updated or disabled. If the Host subsequently chooses to assign new Group Addresses, a new DAT 945

entry will need to be allocated for each such Group Address (see Q14.2). 946

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 35

Public Release Edition

2.15 In-Band Interrupt and Hot-Join

Q15.1 How can an I3C Controller support Pending Read Notifications?

I3C Host Controllers can easily support Pending Read Notifications by implementing the Auto-Command 947

feature that conforms to the Pending Read Notification contract. This allows the Host Controller to 948

automatically initiate a Read transfer after receiving an IBI that is a Pending Read Notification. Once a 949

suitable IBI is seen, the Host Controller will initiate either a Private Read (in SDR Mode) or an HDR Generic 950

Read (in supported HDR Modes) of the same Target, without software intervention, based on matching MDB 951

values. The Driver must configure the Auto-Command fields in the DAT entries for I3C Targets to enable the 952

Auto-Command behavior. 953

If the implementer chooses not to support the Auto-Command feature, then it is the Driver’s responsibility to 954

manage the Pending Read behavior. In some situations, the Driver must pause or cancel any previously 955

enqueued Read transfers if the Host Controller receives such an IBI with a matching MDB value to signal a 956

Pending Read Notification, as this would oblige the Driver to initiate a Read transfer (i.e., SDR Private Read 957

or HDR Generic Read) that is expected for this IBI. If another Read transfer was enqueued and the Driver 958

did not (or could not) stop it in time, then there is a chance that this Read transfer would consume the Pending 959

Read data. Then, it would be the Driver’s responsibility to correctly associate the consumed Pending Read 960

data with the IBI notification. 961

Q15.2 Can the Driver tell the Host Controller to deny any Hot-Join Requests?

Yes, although this is not recommended for most use cases. Hot-Join Requests are fundamental to discovering 962

I3C Targets that join the Bus and need a Dynamic Address to be assigned. If Hot-Join Requests must be 963

temporarily disabled, then the Driver should take the following steps: 964

• Enqueue a Transfer Command that sends the Broadcast DISEC CCC with the DISHJ bit set (see the 965

I3C Specification Section 5.1.9.3.1. 966

• Write 1'b1 to field HOT_JOIN_CTRL in register HC_CONTROL (see [MIPI12] Section 7.4.2) to tell 967

the Bus Controller logic to respond automatically with NACK followed by the Broadcast DISEC 968

CCC with the DISHJ bit set. 969

When the Driver decides to re-enable Hot-Join Requests on the I3C Bus, the Driver should take the following 970

steps: 971

• Write 1'b0 to field HOT_JOIN_CTRL in register HC_CONTROL to tell the Bus Controller logic to 972

respond automatically with ACK. 973

• Enqueue a Transfer Command that sends the Broadcast ENEC CCC with the ENHJ bit set (see the 974

I3C Specification Section 5.1.9.3.1. 975

Note: 976

If Hot-Join Requests are enabled, then the Driver will still need to enqueue new Address Assignment 977

Commands to assign a Dynamic Address, as and when I3C Targets successfully send Hot-Join 978

Requests. 979

Q15.3 How should the Driver prepare for situations where the Host Controller frequently

processes Hot-Join Requests on the I3C Bus?

In many situations where Hot-Join Requests are received frequently, or when they arrive later than I3C Bus 980

initialization (i.e., after the initial set of I3C Targets are discovered and configured), unexpected Hot-Join 981

Requests can create a challenge for Driver implementers. This is especially true if I3C Targets are power-982

cycled frequently or go through deep sleep/wake cycles where they do not keep their Dynamic Addresses. 983

Here are some recommendations on how to handle such situations: 984

• Maintain a list of known I3C Targets in Host system memory, along with PID + BCR + DCR 985

values (i.e., the values read from the DCT when each I3C Target is initially discovered). 986

• As an I3C Target goes offline (i.e., fails to respond to Transfer Commands), mark its entry in Host 987

system memory to show the I3C Target is offline but may rejoin later. 988

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

36 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

• Reserve one DAT entry with a temporary Dynamic Address (e.g., the last DAT entry) that will be 989

used for subsequent Hot-Join Requests after initial I3C Bus configuration: 990

A. As and when each Hot-Join Request is received, enqueue an Address Assignment Command 991

for ENTDAA with DEV_COUNT = 1 and DEV_INDEX pointing to that reserved entry. 992

B. Capture the PID + BCR + DCR values from the DCT entry and compare them with the list of 993

previously known I3C Targets. If the values match, then use the SETNEWDA CCC to re-994

assign the Target’s previous Dynamic Address. At this point, the previous DAT entry is valid 995

again. If the values do not match (i.e., this Target was not previously known), then set up a 996

new DAT entry to hold a new Dynamic Address, then use the SETNEWDA CCC to change the 997

Target’s Dynamic Address. 998

C. The reserved DAT entry will be free for use again, with the same temporary Dynamic 999

Address. 1000

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 37

Public Release Edition

2.16 Common Command Codes (CCCs)

Q16.1 What are the differences in CCC behaviors for I3C HCI v1.1 and later?

I3C HCI v1.1 added support for CCCs with Defining Bytes, a new feature that was added with I3C v1.1. This 1001

required the Transfer Command types to be extended to indicate whether a Defining Byte would be sent and 1002

which Defining Byte value to send. The Managed CCC Transfer Framing model now supports CCCs with 1003

and without Defining Bytes and automatically re-sends the Broadcast Address (7'h7E) along with new, 1004

optimized Command Codes and Defining Bytes, when needed. 1005

I3C HCI v1.1 and later also clarified details on which CCCs were not allowed to be sent in Transfer 1006

Commands, as the Host Controller could only send these CCCs automatically. 1007

Q16.2 Does I3C HCI support sending CCCs in HDR Modes?

Host Controllers do not yet support this capability. 1008

Q16.3 Does the mandated “single-retry model” apply to all Direct Read CCCs?

The I3C v1.1 Specification Section 5.1.9.2.3 states: “I3C mandates a single-retry model for Direct GET CCC 1009

Commands.” Based on this statement, the Host Controller is required to retry once for the Directed GET 1010

CCCs if the Target NACKs the first try. This may not be necessary for other ‘read’ Directed CCCs (such as 1011

RSTACT, MLANE, vendor read, or others) that are not defined for dedicated Read CCCs (i.e., CCCs that have 1012

names in the form GETxxx). However, the Host Controller will automatically retry all Direct Read CCCs, 1013

regardless of the Command Code, if it receives a NACK on the first attempt. This will happen regardless of 1014

the value of field DEV_NACK_RETRY_CNT in the DAT entry for the addressed I3C Target. 1015

Q16.4 Does the Host Controller check to see if any CCCs that require Defining Bytes are

always indicated with a Defining Byte in the Transfer Command?

No. It is the Driver’s responsibility to ensure that Transfer Commands are constructed correctly for all CCCs 1016

(both Direct and Broadcast). In some cases, a particular CCC is always required to be sent with a Defining 1017

Byte; this is the case for some new CCCs that were added in I3C v1.1 and later and might be the case for 1018

some vendor-defined CCCs. If so, then the Driver must indicate the Defining Byte and set the appropriate 1019

fields in the Transfer Command. 1020

Q16.5 Does a Host Controller support the use of Vendor/Standard Extension CCCs in

Transfer Commands?

Yes. The Command Code field in a Transfer Command can use any valid value, including those that are 1021

available for Vendor/Standard Extension CCCs or those that have been assigned to different MIPI WGs. 1022

Q16.6 Can the Driver mix Transfer Commands that are CCCs with Private Read/Write

Transfer Commands?

Yes. The Driver can enqueue any Transfer Commands that form a sequence of regular Read/Write transfers 1023

and Broadcast/Direct CCCs in any order that is valid for the Target’s use case. If all such Transfer Commands 1024

(except the last one) use value 0 in field TOC, then the Host Controller will execute these Transfer Commands 1025

in a continuous sequence (i.e., using Repeated START between transfers) and drive the CCC framing 1026

appropriately. As part of the Managed CCC Transfer Framing Model, the Host Controller will automatically 1027

enter the CCC framing when it executes a Transfer Command that is a CCC and then exit the CCC framing 1028

when it executes a Transfer Command that is a Private Write or Private Read transfer. 1029

Q16.7 What is the new Command Code value 0x1F for CCCs, and how should it be used?

In I3C v1.1.1 and I3C Basic v1.1.1, a new dummy command code value 0x1F is defined for special use only 1030

in CCC flows for HDR Modes that require special structured protocol elements (i.e., Words or Blocks) to 1031

conform to that HDR Mode’s coding. This 0x1F dummy Command Code has no meaning as a standard CCC, 1032

as it is only used in special flows. Since this version of the I3C HCI Specification does not support CCCs in 1033

HDR Modes, the Driver should never use Command Code value 0x1F for any Transfer Commands that are 1034

CCCs. 1035

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

38 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

Note: 1036

In general, other Host Controller implementations that support CCCs in HDR Modes should drive this 1037

dummy Command Code automatically as needed to handle the CCC framing in a manner equivalent 1038

to the Managed CCC Transfer Framing Model defined in the I3C HCI Specification. If such a 1039

capability is added to a future version of the I3C HCI Specification, then the MIPI Software WG will 1040

aim to handle the CCC framing automatically for HDR Modes, as it currently does for SDR Mode. 1041

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 39

Public Release Edition

2.17 Resets and Error Handling

Q17.1 How does the Host Controller handle the defined I3C Error Types for I3C Controller

Devices?

For Error Type CE0, the Host Controller will report the transfer status in the Response Descriptor. It is the 1042

Driver’s responsibility to determine whether a Target’s response to a CCC is an error (e.g., an insufficient 1043

number of data bytes returned during a Direct Read CCC). 1044

If the Host Controller supports the optional Error Type CE1, then the Host Controller should detect when the 1045

transmitted data is different from what it intended to transmit (e.g., another I3C Device was driving SDA at 1046

the wrong time). If this occurs, then the Host Controller should abort the transfer and indicate this in the 1047

Response Descriptor with a value of 0x9 (BUS_ABORTED) in field ERR_STATUS. The Host Controller should 1048

also report the error via the appropriate abort register. 1049

For Error Type CE2, the Host Controller will automatically end the transfer with a STOP, then drive the HDR 1050

Exit Pattern to recover the Bus from a situation where there is no ACK of the Broadcast Address. 1051

If the Host Controller supports optional Standby Controller mode and detects Error Type CE3 when passing 1052

the Controller Role to the indicated Secondary Controller, then the Host Controller will automatically regain 1053

the Controller Role and report the error in field ACR_HANDOFF_ERR_M3_STAT of register 1054

STBY_CR_INTR_STATUS (see [MIPI12] Section 7.7.11.7). 1055

Q17.2 How can the Driver initiate a recovery procedure for a stuck SDA lane?

The Driver should send the special Recovery Reset Command Descriptor, which is a subtype of the Internal 1056

Control Command, per [MIPI12] Section 6.15.2.1. 1057

Q17.3 How can the Driver initiate a recovery procedure that requires either a STOP

condition or an HDR Exit Pattern?

The Host Controller will automatically drive the STOP condition and/or HDR Exit Pattern at appropriate 1058

times, including when it detects Error Type CE2. The Driver may also drive this manually using the special 1059

Recovery Reset Command Descriptor, which is a subtype of the Internal Control Command, per [MIPI12] 1060

Section 6.15.2.2 and Section 6.15.2.3. 1061

Q17.4 Does the Host Controller automatically use the GETSTATUS CCC in cases where a

Target does not respond to a transfer or CCC?

No. It is the Driver’s responsibility to send a Transfer Command with the GETSTATUS CCC to such a Target. 1062

The Driver should monitor incoming Response Descriptors for a NACK or other error and drive the 1063

GETSTATUS CCC when appropriate. 1064

Q17.5 How can the Driver initiate a Target Reset action?

The Driver should send the Target Reset Command Descriptor, which is a subtype of the Internal Control 1065

Command, per [MIPI12] Section 6.15.1. 1066

If the Driver needs to send only the Target Reset Pattern (i.e., without any preceding RSTACT CCCs), then 1067

the Driver will need to enqueue one or more Target Reset Command Descriptors (see [MIPI12] 1068

Section 6.15.1.1). 1069

If the Driver needs to configure a specific reset action (i.e., when using the RSTACT CCC before the Target 1070

Reset Pattern), then the Driver will need to construct an atomic reset sequence starting with the Target Reset 1071

Command Descriptor to enter the critical section (see [MIPI12] Section 6.15.1.2). This is followed by one 1072

or more Transfer Commands that are RSTACT CCCs (either Broadcast or Direct, in the appropriate sequence) 1073

and another Target Reset Command Descriptor to leave the critical section. The Host Controller will 1074

automatically send the Target Reset Pattern after the last such Transfer Command (i.e., with field TOC set to 1075

1'b1). 1076

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

40 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

Q17.6 What is a Command Sequence stall or timeout, and how does the Host Controller

handle this situation?

The I3C TCRI Specification ([MIPI06] Section 6.4.2) defines a Command Sequence as a situation where 1077

the Driver has enqueued several Command Descriptors that are Transfer Commands, all of which have field 1078

TOC set to 1'b0 except the last Transfer Command. Typically, such Transfer Commands would indicate that 1079

the I3C transactions are to be run in a continuous sequence with either a Repeated START or an HDR Restart 1080

Pattern between each one, and terminate after the last Transfer Command with field TOC set to 1'b1 at the 1081

end of the Command Sequence. If the Driver could enqueue the last such Transfer Command promptly, the 1082

Host Controller would know the end of the Command Sequence as it processed the Transfer Commands in 1083

the sequence and understand that it was supposed to end the transfer with either a STOP (in SDR Mode) or 1084

an HDR Exit Pattern (in HDR Modes). 1085

However, if the Driver could not enqueue the last such Transfer Command in time, and the last enqueued 1086

Transfer Command had field TOC set to 1'b0, then the Host Controller’s Command Queue/Ring would 1087

effectively run out of Transfer Commands to process but not know which action to take after the last Transfer 1088

Command. If this occurs, the I3C Bus Controller logic would be forced to either (a) stall processing, if 1089

possible, until the Driver enqueues the last such Transfer Command; or (b) time-out and forcibly end 1090

processing by terminating the transaction to prevent an invalid condition on the I3C Bus. Similarly, if the 1091

Response Queue/Ring becomes full, then the Host Controller could not enqueue new Response Descriptors, 1092

and it would either stall or time-out. 1093

Under typical usage, the Host Controller should never encounter a Command Sequence stall or timeout, as 1094

the Driver and its Host could manage the Command Queue/Ring and Response Queue/Ring with appropriate 1095

latency and would not allow either situation to occur. However, this situation could occur if the system had 1096

high Host latency or the Driver did not optimally configure the Host Controller interrupts. 1097

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 41

Public Release Edition

3 Terminology
See also Section 2 in the MIPI I3C Specification [MIPI01][MIPI07][MIPI08]. 1098

3.1 Definitions

Controller: The I3C Bus Device controlling the Bus. (I3C and I3C Basic versions prior to v1.1.1 used the 1099

deprecated term Master.) 1100

Hot-Join: Targets that join the I3C Bus after it is already started, either because they were not powered 1101

previously or because they were physically inserted into the Bus. The Hot-Join mechanism allows the Target 1102

to notify the Controller that it is ready to get a Dynamic Address. 1103

In-Band Interrupt (IBI): A method whereby a Target Device emits its Address into the arbitrated Address 1104

header on the I3C Bus to notify the Controller of an interrupt. 1105

Master: Deprecated term used in I3C HCI versions prior to 1.1 and in I3C and I3C Basic versions prior to 1106

v1.1.1. See Controller. 1107

Primary Controller: Controller-capable Device that has initial control of the I3C Bus. Formerly called 1108

“Main Master”. 1109

Slave: Deprecated term used in I3C HCI versions prior to 1.1 and in I3C and I3C Basic versions prior to 1110

v1.1.1. See Target. 1111

Target: An I3C Target Device can only respond to Common or individual commands from a Controller. (I3C 1112

and I3C Basic versions prior to v1.1.1 used the deprecated term Slave.) 1113

3.2 Abbreviations

ACK Short for “acknowledge” (an I3C Bus operation) 1114

DisCo Discovery and Configuration (family of MIPI Alliance interface specifications) 1115

e.g. For example (Latin: exempli gratia) 1116

i.e. That is (Latin: id est) 1117

NACK Short for “not acknowledge” (an I3C Bus operation) 1118

3.3 Style Conventions

The following document styles are used for various constants or entities that are defined in the referenced 1119

MIPI Specifications: 1120

• CCCs that are defined in the I3C Specification 1121

• BITFIELDS for CCCs that are defined in the I3C Specification 1122

• REGISTERS that are defined in the I3C HCI Specification 1123

• Register FIELDS that are defined in the I3C HCI Specification 1124

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

42 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

3.4 Acronyms

See also the acronyms defined in the MIPI I3C HCI Specification and the MIPI I3C Specification. 1125

ACPI Advanced Configuration and Power Interface 1126

APU Application Processing Unit 1127

ASIC Application Specific Integrated Circuit 1128

BCR Bus Characteristics Register 1129

CCC Common Command Code (an I3C common command or its unique code number) 1130

CPU Central Processing Unit 1131

CTS Conformance Test Suite 1132

DAT Device Address Table 1133

DCR Device Characteristics Register 1134

DCT Device Characteristic Table 1135

DMA Direct Memory Access 1136

FAQ Frequently Asked Questions 1137

FPGA Field Programmable Gate Array 1138

HCI Host Controller Interface 1139

(a MIPI Alliance interface specification [MIPI02][MIPI09][MIPI12]) 1140

HDR High Data Rate (a set of I3C Bus Modes) 1141

HDR-BT HDR Bulk Transfer (an I3C Bus Mode) 1142

HDR-DDR HDR Double Data Rate (an I3C Bus Mode) 1143

I3C Improved Inter Integrated Circuit 1144

(a MIPI Alliance interface specification [MIPI01][MIPI07][MIPI08][MIPI10][MIPI11]) 1145

IBI In-Band Interrupt (an I3C Bus feature) 1146

MC Micro-controllers 1147

MDB Mandatory Data Byte 1148

PID Provisioned ID (a 48-bit unique ID for each I3C Target on the Bus) 1149

PIO Programmable I/O 1150

SCL Serial Clock (an I3C Bus line) 1151

SDA Serial Data (an I3C Bus line) 1152

SDR Single Data Rate (an I3C Bus Mode) 1153

SPI Serial Peripheral Interface (an interface specification) 1154

SRAM Static Random Access Memory 1155

TCRI Transfer Command/Response Interface (a MIPI Alliance interface specification [MIPI06]) 1156

FAQ Version 1.0 FAQ for MIPI I3C HCI v1.2

11-Aug-2023

 Copyright © 2023 MIPI Alliance, Inc. 43

Public Release Edition

4 References

[MIPI01] MIPI Alliance Specification for I3C® (Improved Inter Integrated Circuit), version 1.0, 1157

MIPI Alliance, Inc., 23 December 2016 (Adopted 31 December 2016). 1158

[MIPI02] MIPI Alliance Specification for I3C Host Controller Interface (I3C HCISM), version 1.0, 1159

MIPI Alliance, Inc., 29 September 2017 (Adopted 4 April 2018). 1160

[MIPI03] MIPI Alliance Specification for Discovery and Configuration (DisCoSM), version 1.0, 1161

MIPI Alliance, Inc., 1 July 2016 (Adopted 28 December 2016). 1162

[MIPI04] MIPI Alliance DisCoSM Specification for I3CSM, version 1.1, 1163

MIPI Alliance, Inc., 26 September 2022 (Adopted 28 February 2023). 1164

[MIPI05] MIPI Alliance I3C Application Note: General Topics, App Note version 1.1, 1165

MIPI Alliance, Inc., 27 April 2022 (approved 27 July 2022). 1166

[MIPI06] MIPI Alliance Specification for I3C Transfer Command Response Interface 1167

(I3C TCRISM), version 1.0, MIPI Alliance, Inc., 24 May 2022 (Adopted 1168

7 September 2022). 1169

[MIPI07] MIPI Alliance Specification for I3C BasicSM (Improved Inter Integrated Circuit), 1170

version 1.0, MIPI Alliance, Inc., 19 July 2018 (Adopted 8 October 2018). 1171

[MIPI08] MIPI Alliance Specification for I3C® (Improved Inter Integrated Circuit), version 1.1, 1172

MIPI Alliance, Inc., 27 November 2019 (Adopted 11 December 2019). 1173

[MIPI09] MIPI Alliance Specification for I3C Host Controller Interface (I3C HCISM), version 1.1, 1174

MIPI Alliance, Inc., 20 May 2021 (Adopted 20 May 2021). 1175

[MIPI10] MIPI Alliance Specification for I3C® (Improved Inter Integrated Circuit), version 1.1.1, 1176

MIPI Alliance, Inc., 11 June 2021 (Adopted 8 June 2021). 1177

[MIPI11] MIPI Alliance Specification for I3C BasicSM (Improved Inter Integrated Circuit), 1178

version 1.1.1, MIPI Alliance, Inc., 9 June 2021 (Adopted 21 July 2021). 1179

Note: 1180

Version number v1.1 was not used for I3C Basic. 1181

[MIPI12] MIPI Alliance Specification for I3C Host Controller Interface (I3C HCISM), version 1.2, 1182

MIPI Alliance, Inc., 15 February 2023 (Adopted 12 April 2023). 1183

[LINX01] Linux Kernel Patches for I3C subsystem, 1184

<https://patchwork.kernel.org/project/linux-i3c/list/>, last accessed 11 August 2023. 1185

https://patchwork.kernel.org/project/linux-i3c/list/

FAQ for MIPI I3C HCI v1.2 FAQ Version 1.0

 11-Aug-2023

44 Copyright © 2023 MIPI Alliance, Inc.

Public Release Edition

This page intentionally left blank.

	Contents
	Release History
	1 Introduction
	2 Frequently Asked Questions
	General Questions
	2.1 Introduction to MIPI I3C HCI
	Q1.1 What is MIPI I3C HCI?
	Q1.2 What is MIPI I3C TCRI?
	Q1.3 What are MIPI I3C and I3C Basic?
	Q1.4 Why was I3C HCI introduced?
	Q1.5 What are the main features of I3C HCI?
	Q1.6 For which applications or use cases is I3C HCI intended?
	Q1.7 How can the I3C HCI Specification and related MIPI Specifications be obtained?

	2.2 I3C HCI Versions and Releases
	Q2.1 What is new in I3C HCI v1.1?
	Q2.2 What is new in I3C HCI v1.2?
	Q2.3 What are the required features in I3C HCI v1.2 vs. I3C HCI v1.1 / v1.0?
	Q2.4 Are there any I3C v1.1/v1.1.1 features that are not supported in I3C HCI v1.2?
	Q2.5 Does a Host Controller that complies with I3C HCI v1.2 still interoperate with I3C Target Devices that comply with I3C v1.0 or I3C Basic v1.0?
	Q2.6 Can a Host Controller that supports the full I3C Specification interoperate with I3C Target Devices that only support the I3C Basic Specification?
	Q2.7 Can a Host Controller that only supports the I3C Basic Specification interoperate with I3C Target Devices that support the full I3C Specification?

	2.3 Up and Coming
	Q3.1 Are there any impending fixes or Errata for I3C HCI v1.2 that should be applied now?
	Q3.2 Are any revisions to I3C HCI v1.2 expected?
	Q3.3 What new features, if any, are coming to I3C HCI?

	2.4 Naming and Terminology
	Q4.1 What is an I3C Controller Device, and why was the I3C Master Device renamed?
	Q4.2 What is an I3C Target Device, and why was the I3C Slave Device renamed?
	Q4.3 What is the difference between a Bus Controller and a Host Controller?

	2.5 Ecosystem
	Q5.1 Who is defining the I3C HCI Specification and other related MIPI Specifications?
	Q5.2 Is anyone currently using I3C HCI?
	Q5.3 What is the I3C HCI IP core availability in the market?

	2.6 Interacting with Targets
	Q6.1 Will all I3C Targets be compatible with all CCCs?
	Q6.2 Can the Host send any CCCs using a Transfer Command?
	Q6.3 Will Legacy I2C Targets respond to I3C commands?
	Q6.4 How does a Host Controller handle a NACK of a Transfer Command?

	2.7 Interoperability Workshops
	Q7.1 What is a MIPI I3C Interoperability Workshop?
	Q7.2 What is the output from a MIPI I3C Interoperability Workshop?
	Q7.3 Are MIPI I3C Interoperability Workshops an ongoing activity?
	Q7.4 Who can attend or participate in a MIPI I3C Interoperability Workshop?
	Q7.5 What HW/SW is typically needed to participate in a MIPI I3C Interoperability Workshop?
	Q7.6 Are there any I3C Interoperability Workshops planned for I3C v1.1.1 or I3C Basic v1.1.1?

	2.8 Conformance Testing
	Q8.1 What is a MIPI Conformance Test Suite (CTS)?
	Q8.2 Is there a MIPI CTS for I3C HCI?

	Detailed Technical Questions
	2.9 Support for Optional I3C HCI Features
	Q9.1 Which optional Host Controller features should an implementer support?
	Q9.2 Are Host Controllers required to support optional I3C features such as HDR Modes or Timing Control modes?
	Q9.3 Are Host Controllers required to support Standby Controller Mode as a Secondary Controller?

	2.10 Implementation: As a Host Controller Implementer
	Q10.1 How many Target Devices can a Host Controller support?
	Q10.2 How does the Host Controller resolve communication conflicts on the I3C Bus?
	Q10.3 How and when should implementers support Device Context in system memory?
	Q10.4 If the Host Controller supports both the DAT and DCT in Device Context memory, how is this memory partitioned?
	Q10.5 What is the recommended number of entries for the DAT and the DCT?
	Q10.6 What factors should be considered when deciding whether to implement support for PIO Mode?
	Q10.7 What factors should be considered when deciding whether to implement support for DMA Mode?
	Q10.8 Can a Host Controller implement support for both PIO Mode and DMA Mode?
	Q10.9 How much of a Host Controller implementation must be hardware or firmware?
	Q10.10 How should a Host Controller’s registers and queues be implemented?
	Q10.11 What I3C data transfer speeds are required, and how should a Host Controller support them?
	Q10.12 How does a Host Controller advertise which types of Internal Control Commands are supported?

	2.11 Implementation: As a Software Developer
	Q11.1 Where are the definitions for Transfer Command and Transfer Response structures?
	Q11.2 Are there any companion MIPI I3C Specifications that enable software development or system integration?
	Q11.3 Are there software libraries available for I3C?

	2.12 Operation in PIO Mode
	Q12.1 What has changed in I3C HCI v1.1 relating to PIO Mode?
	Q12.2 What has changed in I3C HCI v1.2 relating to PIO Mode?

	2.13 Backwards Compatibility with I2C
	Q13.1 Is an I3C Host Controller backwards compatible with I²C? Can I3C and I²C Devices coexist on the same Bus?
	Q13.2 Does the Driver need to take any additional steps if the Bus has I3C Targets that initially act as Legacy I²C Targets?

	2.14 Dynamic Address Assignment and Group Address Assignment
	Q14.1 Can the Host Controller detect a PID collision during Dynamic Address Assignment with the ENTDAA CCC?
	Q14.2 Does the Host Controller require any special support for Group Addressing?
	Q14.3 How does the use of any Address Assignment CCCs affect existing DAT entries?
	Q14.4 How can an I3C Target’s assigned Dynamic Address be changed?
	Q14.5 Should the Driver clear an existing DAT entry if an assigned Dynamic Address or Group Address is no longer valid?
	Q14.6 Does the RSTDAA CCC also clear any assigned Group Addresses?
	Q14.7 How does the RSTGRPA CCC affect existing DAT entries with Group Addresses?

	2.15 In-Band Interrupt and Hot-Join
	Q15.1 How can an I3C Controller support Pending Read Notifications?
	Q15.2 Can the Driver tell the Host Controller to deny any Hot-Join Requests?
	Q15.3 How should the Driver prepare for situations where the Host Controller frequently processes Hot-Join Requests on the I3C Bus?

	2.16 Common Command Codes (CCCs)
	Q16.1 What are the differences in CCC behaviors for I3C HCI v1.1 and later?
	Q16.2 Does I3C HCI support sending CCCs in HDR Modes?
	Q16.3 Does the mandated “single-retry model” apply to all Direct Read CCCs?
	Q16.4 Does the Host Controller check to see if any CCCs that require Defining Bytes are always indicated with a Defining Byte in the Transfer Command?
	Q16.5 Does a Host Controller support the use of Vendor/Standard Extension CCCs in Transfer Commands?
	Q16.6 Can the Driver mix Transfer Commands that are CCCs with Private Read/Write Transfer Commands?
	Q16.7 What is the new Command Code value 0x1F for CCCs, and how should it be used?

	2.17 Resets and Error Handling
	Q17.1 How does the Host Controller handle the defined I3C Error Types for I3C Controller Devices?
	Q17.2 How can the Driver initiate a recovery procedure for a stuck SDA lane?
	Q17.3 How can the Driver initiate a recovery procedure that requires either a STOP condition or an HDR Exit Pattern?
	Q17.4 Does the Host Controller automatically use the GETSTATUS CCC in cases where a Target does not respond to a transfer or CCC?
	Q17.5 How can the Driver initiate a Target Reset action?
	Q17.6 What is a Command Sequence stall or timeout, and how does the Host Controller handle this situation?

	3 Terminology
	3.1 Definitions
	3.2 Abbreviations
	3.3 Style Conventions
	3.4 Acronyms

	4 References

