

IF IT'S NOT MIPI, IT'S NOT MOBILE

How You Can Benefit from Using MIPI A-PHY in Your Next Automotive Design

Edo Cohen Co-Chair, MIPI A-PHY Working Group Valens Semiconductor

MIPI A-PHY Overview

MIPI A-PHY – Automotive Long-Reach PHY

The first industry-standard *long-reach* asymmetric SerDes physical layer specification targeted for ADAS/ADS surround sensor applications and infotainment display applications

A-PHY v1.0 offers:

- Direct coupling to native CSI-2/DSI-2/DP-eDP protocols
- High performance of up to 16 Gbps over 10-15m
- High noise immunity, ultra low PER (< 10⁻¹⁹)
- Supports bridge-based and endpoint integration
- Support for automotive coax and STP\SPP channels
- Power over cable

****NEW**** A-PHY v1.1 Enhancements:

- Increased support for lower cost legacy cables
- Double uplink data rate
- Star quad cable support, enabling dual downlink operation

PER: Packet Error Rate STP: Shielded Twisted Pair SPP: Shielded Parallel Pair ADAS: Advanced Driver Assistance SystemADS: Autonomous Driving SystemSoC: System On Chip

A-PHY v1.0 Performance- and Immunity-Based Profiles

Performance Variance and Scalability

 A-PHY scales up the bandwidth without changing the cables and connectors by increasing the PAM level

Noise Immunity (EMC RF Ingress) Variance

- Different OEMs have different requirements
- MIPI-conducted EMC tests at independent labs evaluating noise levels and shielding effects degradation after mechanical stress and aging

Two Performance / Noise Immunity Profiles

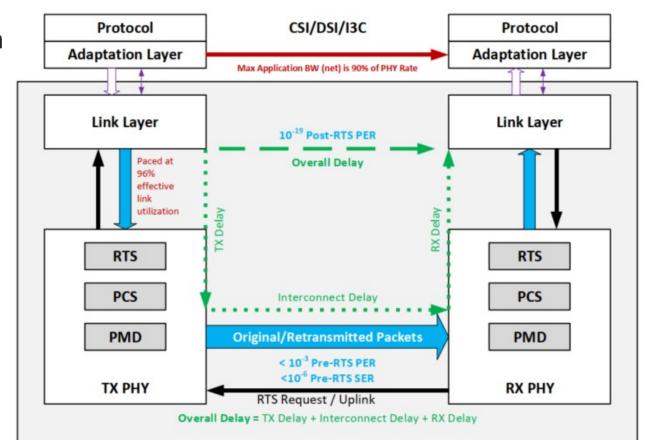
- Profile 1: Optimized for low cost/power implementations for lower gears with lower noise immunity and target PER <10⁻⁹
- Profile 2: Optimized for Vehicle Life-span, link robustness for all Gears with high noise immunity and target PER <10⁻¹⁹

Interoperability

liance

- Full inter-profile interoperability
- A-PHY Device supporting Gear N (N could be 1–5) shall support all lower gears.

MIPI A-PHY v1.0 Performance


Downlink Gear Data Rate	Modulation	Modulation Bandwidth (GHz)	Max Net App Data Rate (Gbps)	
G1 2 Gbps	NRZ-8B/10B	1	1.5	
G2 4 Gbps			3	
G3 8 Gbps	PAM4	2	7.2	
G4 12 Gbps	PAM8	2	10.8	
G5 16 Gbps	PANID		14.4	
<i>Uplink</i> 100Mbps	NRZ-8B/10B	0.05	55 Mbps	

What Makes MIPI A-PHY So Robust and Efficient?

RTS + NBIC

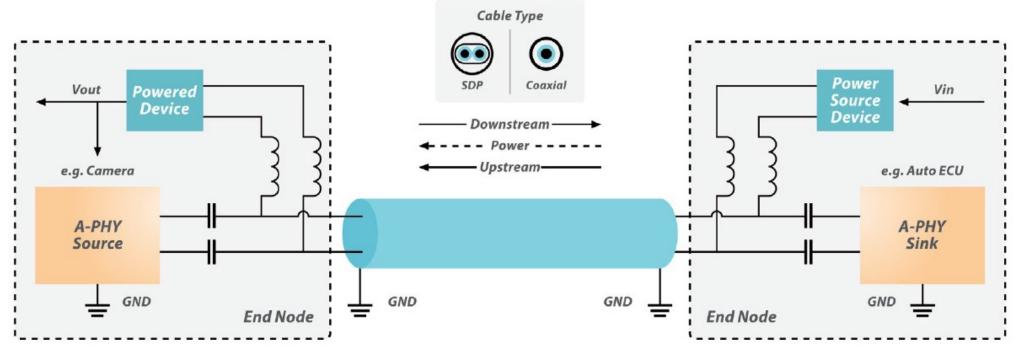
Time bounded local PHY level retransmission

- Only within pre-defined "Overall Delay" (~6µs@G5)
- Local: Transparent to the upper layers
- Local: Happens within a single A-PHY hop
- Dynamic modulation for retransmitted packets with better error resistance
- Highly Resilient
 - Overcomes large Thousands symbols-long error bursts
 - Multiple 10s mV, instantly attacking NBI peaks
- High Reliability \rightarrow PER < 10⁻¹⁹
- Low Overhead → 90% Net Data Rate

RTS: Re-Transmission Sub-Layer **PMD:** Physical Media Dependent

NBI: Narrow Band Interferences PCS: Physical Coding Sub-Layer

A-Packet


	A-Packet								
A-Packet Header							A-Packet Payload	A-Packet Tail	
$\left(\right)$									
8-bit	8-bit	8-bit	8-bit	8-bit	8-bit	8-bit	8-bit		
Adaptation Descriptor	Service Descriptor	Placement Descriptor	TX-D	Target Address	МС	Payload Length (N)	PHY Header CRC	Payload (K Payload Bytes)	PHY Tail CRC-32

- The A-Packet is structured to carry Native Protocol data and all information that the A-PHY Data Link Layer requires to perform its functions efficiently
- Downlink and uplink use the same packet structure
- Structure is optimized, supporting aggregation of multiple protocols with minimal overhead and latency
- A-Packet header contains all required information (e.g., QoS, Priority, Destination, Protocol Type)
- The A-Packet structure:
 - Header 8 Byte including MC (Message Counter)
 - Payload
 - Tail 4 Byte (CRC-32)

A-PHY Interconnect

- A-PHY is a single lane, point-to-point, serial communication technology
- Support for multiple cable types SDP/Coax
- Power over cable supported
- Up to 15m with 4 inline connectors

A-PHY Functional Safety Features

- A-PHY packets are end-to-end protected as recommended in ISO-26262:2018:
 - CRC-32 for each packet, providing a Hamming-Distance of more than 3
 - Message Counter that is 8 bits wide
 - Timeout monitoring is fulfilled by the Keep-Alive function
- The above measures are necessary to argue a high diagnostic coverage for a communication bus, per Table D.6 in ISO 26262-5:2018
- All other functional safety features necessary to fulfill the required system-level safety goal with ASIL are expected to be managed by upper layers

A-PHY's tunnels, end-to-end, all the protection elements, allowing both Safety and Security (SPDM).

What's Coming in A-PHY v1.1

A-PHY v1.1 enhancements:

- 200 Mbps double rate uplink (U2)
- Optional PAM4 modes for G1 & G2
- Adds STQ cable support (see next slide)

Enhanced Performance Variance and Scalability

Expands PAM4 encoding to lower gears, reducing the operating signal rate of these gears and allowing implementation of A-PHY using lower cost legacy cables and connectors.

Same High Noise Immunity (EMC RF Ingress)

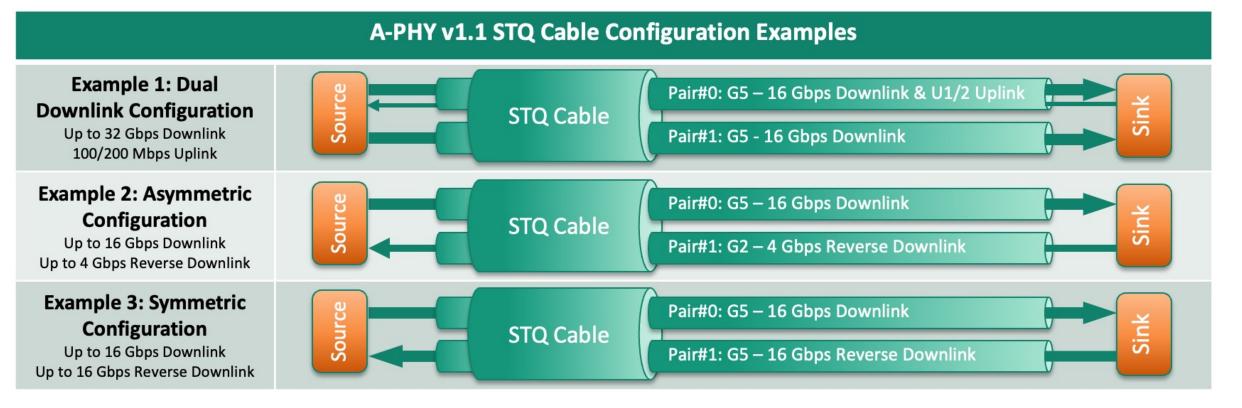
Supports same high noise immunity with an ultra-low Packet Error Rate (< 10^{-19}) \rightarrow built for vehicle life span support

Interoperability and Compatibility

alliance

- A-PHY v1.1 backward compatible with v1.0
- A-PHY v1.0 forward compatible with v1.1

A-PHY guarantees full inter-profile interoperability; devices will support all the various gears below them

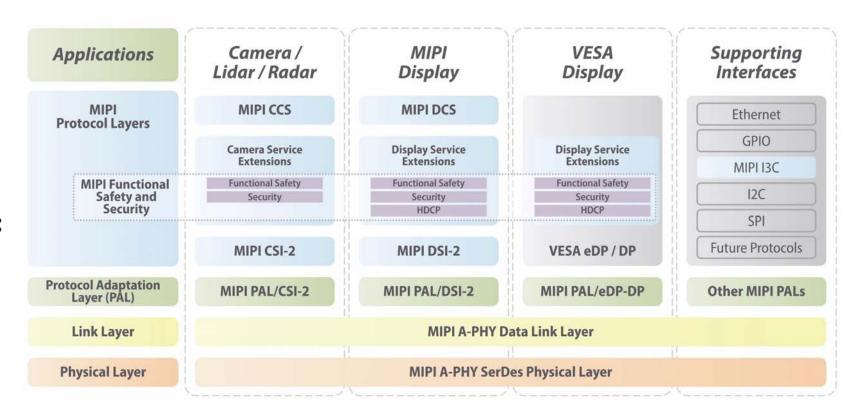

MIPI A-PHY Performance

A-PHY v1.1 enhancements shown in orange

Downlink Gear Data Rate	Modulation	Modulation Bandwidth (GHz)	Max Net App Data Rate (Gbps)	
G1	NRZ-8B/10B	1	1.5	
2 Gbps	PAM4 (Optional)	0.5	1.8	
G2	NRZ-8B/10B	2	3	
4 Gbps	PAM4 (Optional)	1	3.6	
G3 8 Gbps	PAM4	2	7.2	
G4 12 Gbps	PAM8	2	10.8	
G5 16 Gbps	PANID		14.4	
Uplink Gear Data Rate	Modulation	Modulation Bandwidth (MHz)	Max Net App Data Rate (Mbps)	
<i>U1</i> 100 Mbps	NRZ-8B/10B	50	55	
U2 200 Mbps	PAM4-8B/10B	50	125	

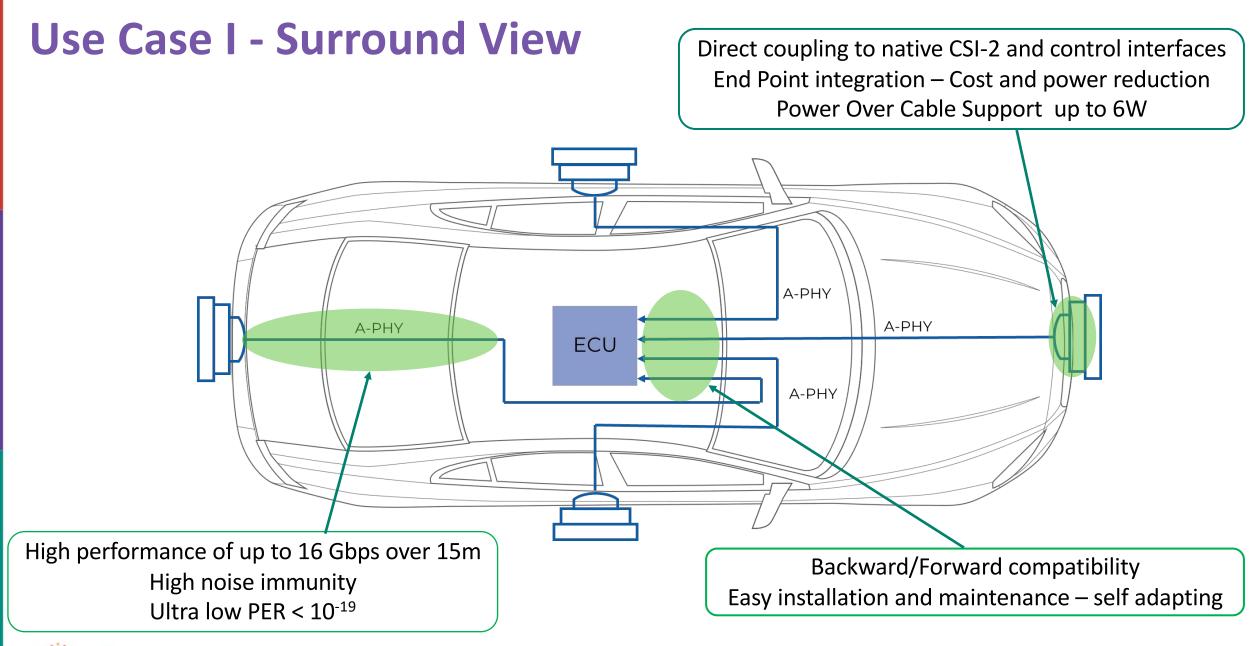
A-PHY v1.1: Adds Support for STQ Cables

- Supports Star Quad (STQ) shielded dual differential pair (i.e., 4 conductor) cables and High-Speed Data (HSD) connectors.
- Referred to as "Q-Port" within the A-PHY working group.
- Efficient size, cost and weight compared to two separate Shielded Differential Pair (SDP) cables

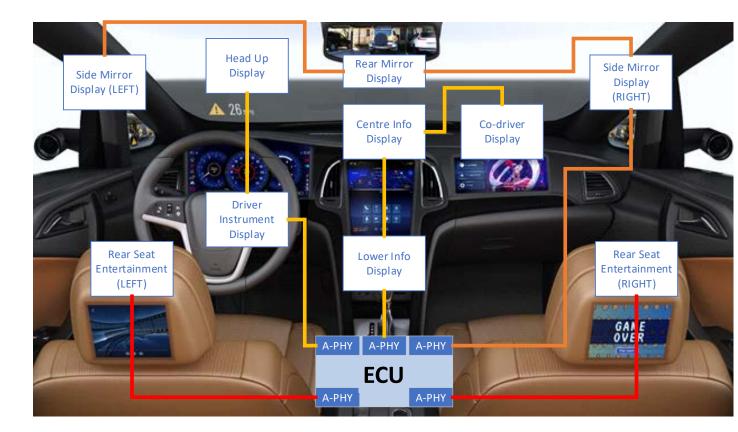


A-PHY is the Foundation of MIPI Automotive SerDes Solutions (MASS)

- Direct coupling to native MIPI protocols (i.e., CSI-2, DSI-2)
- End to End Functional Safety
- End to End Security (WIP)
- Multiple supporting interfaces:
 - I2C
 - GPIO
 - Ethernet
 - MIPI I3C (WIP)
 - SPI (WIP)

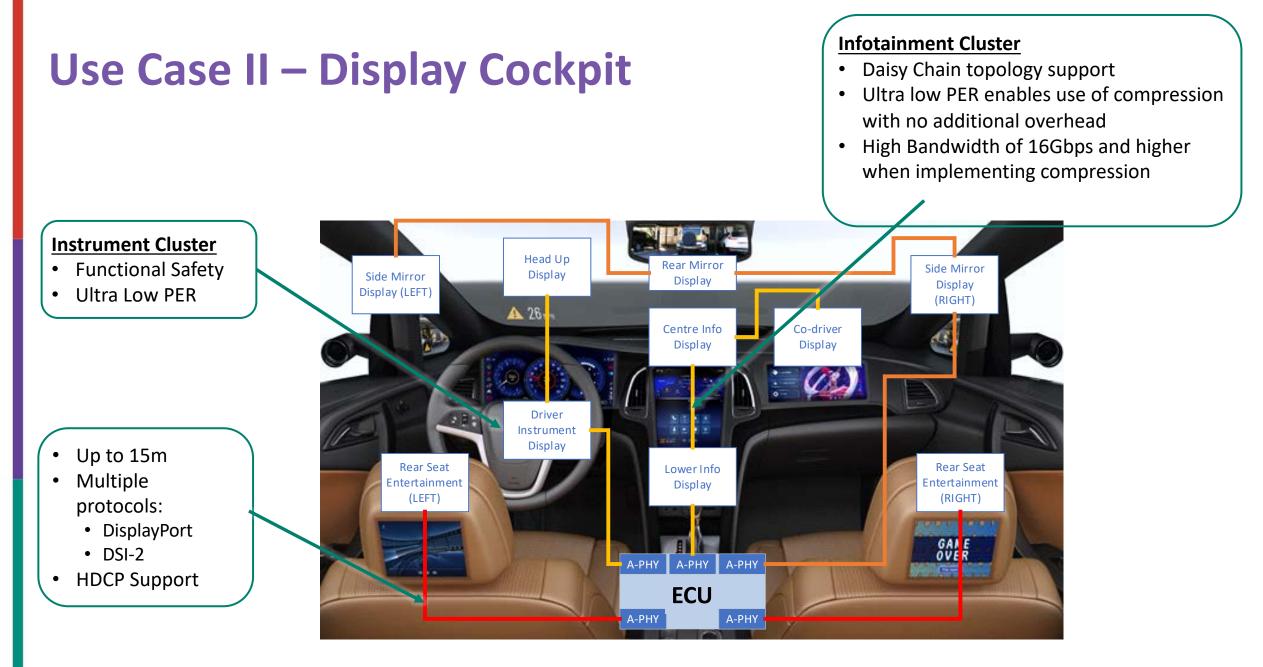

First MIPI A-PHY Compliant Chipset – Available

- MIPI A-PHY V1.0 compliant system
- Up to 8Gbps Downlink (G1-G3)
- ISO-26262, ASIL-B
- Serializer
 - CSI-2 input over D-PHY
 - 4 Data Lanes up to 2.5Gbps per lane
 - 16 Virtual Channels
 - Control I2C, GPIO
- Quad De-serializer
 - 4 x A-PHY Ports (G3)
 - 2 x CSI-2 output over D/C-PHY
 - D-PHY 4 Data Lanes up to 2.5Gbps per lane
 - C-PHY 2 Data Lanes up to 5.7 Gsps per lane
 - Control I2C, GPIO


Example Use Cases

mipi alliance

Use Case II – Display Cockpit


Dis	olay Type	Number	Size (Inches)	Example Resolution	Net Data Throughput (Gbps)
1	Driver Instrument Display	1	12.3	3840x1440	8.4
2	Center Information Display	1	12.3	3840x2160	12.6
3	Lower Control Display	1	12.4	3840x2160	12.6
4	Co-Driver Display	1	12.3	3840x2160	12.6
5	Side Digital-Mirror Displays	2	7	1280x800	1.5
б	Heads-Up Display	1	3.1	850x480	0.6
7	Rear Seat Entertainment	2+	12.5	3820x2160	12.6
8	Rear Digital-Mirror Display	1	9.7	1280x320	0.75

Notes

- Bandwidth calculation assumes 24b@60Hz VESA CVT 1.2 timing
- VESA DSC Compression can be applied with no additional overhead can support links of up to 48Gbps (~43Gbps net data)
- A-PHY V1.1 Dual Downlink (32Gbps) with compression can support up **96Gbps** (~86Gbps net data).
- A-PHY V1.1 provides flexibility for the return channel

mipi alliance

Summary

• Established ecosystem with multiple vendors working on A-PHY compliant chipsets

First samples will be available by EOY2021

• Clear and forward-looking roadmap and planning

- A-PHY v1.0 Released in 2020
- A-PHY v1.1 Targeted for release in 2021
- A-PHY v2.0 Work has started in the MIPI A-PHY Working Group
- New PALs Expending support for command-and-control interfaces, such as SPI and Ethernet
- Supporting multiple advanced use cases with clear advantages of an industry standard
 - "Error Free" links
 - Seamless integration
 - Interoperability and forward compatibility

MIPI Automotive Resources

Information on A-PHY can be found at:

- <u>MIPI A-PHY Specification Homepage</u>
- MIPI White Paper: Introduction to MASS

MIPI Automotive Workshop

An in-depth look at the MIPI Automotive SerDes Solutions (MASS) framework