

Original Spark: Three Phase Encoding!

1 Unit Interval of Data

2.285 Bits of Information

George Wiley, Qualcomm

Basic Concept of Three Phase Encoding

Three Voltage Levels Per Wire Ensure Proper Differential Reception

Always-Toggle Design Allows for Simple Clock Recovery (100% Transition Density)

Key Takeaways

Three-level single-ended signaling

Non-deterministic transitions based on self-clocked mapping and encoding algorithm

Architecturally Flexible

Source: MIPI Alliance

Mapping and Encoding

Wire States

- A wire state is the collection of A, B, and C
- 6 possible wire states

ANALOG			DIGITAL (3 bits)			
A	В	С	A>B	B>C	C>A	Wire state name
HIGH	LOW	MID	1	0	0	+x
LOW	HIGH	MID	0	1	1	-x
MID	HIGH	LOW	0	1	0	+y
MID	LOW	HIGH	1	0	1	-у
LOW	MID	HIGH	0	0	1	+z
HIGH	MID	LOW	1	1	0	-Z

Symbols: Now We're Transmitting!

- A symbol represents a transition between two wire states
- 5 possible symbols

	Symbol (3 bits)				
	Flip	Rotate	Polarity		
0	0	0	0		
1	0	0	1		
2	0	1	0		
3	0	1	1		
4	1	DC	DC		

Flip	
0	-
1	Same letter, toggle sign.

		Rotate
()	Decr. letter
-	L	Incr. letter

	Polarity
0	1
1	Toggle sign

Mapping 7 Symbols ←→ 16-bit Integers

C-PHY defines a mapping between 7-symbol words and 16-bit integers

Number of **7-symbol words**:

Number of **16-bit integers**:

$$5^7 = 78125$$

$$2^{16} = 65536$$

Well Defined Algorithms from MIPI Alliance

```
Rotate and Polarity bits
            Integer range
                                    Flip bits
           0xFC00-0xFFFF:
                            Flip=[1,0,1,0,0,0,0]
                                                   Integer=[
                                                                      1,
                                                                                   1,ro5,po5,ro3,po3,ro2,po2,ro1,po1,ro0,po0]
           0xF800-0xFBFF:
                           Flip=[0,1,1,0,0,0,0]
                                                   Integer=[
                                                                      1,
                                                                                   0, ro6, po6, ro3, po3, ro2, po2, ro1, po1, ro0, po0]
          0xF400-0xF7FF:
                           Flip=[1,0,0,1,0,0,0]
                                                   Integer=[
                                                                      1.
                                                                                   1, ro5, po5, ro4, po4, ro2, po2, ro1, po1, ro0, po0]
          0xF000-0xF3FF:
                           Flip=[0,1,0,1,0,0,0]
                                                                                   0, ro6, po6, ro4, po4, ro2, po2, ro1, po1, ro0, po0]
                                                  Integer=[
          0xEC00-0xEFFF:
                          Flip=[0,0,1,1,0,0,0]
                                                  Integer=[
                                                                                   1, ro6, po6, ro5, po5, ro2, po2, ro1, po1, ro0, po0]
         0xE800-0xEBFF: Flip=[1,0,0,0,1,0,0]
                                                  Integer=[
                                                                                   0, ro5, po5, ro4, po4, ro3, po3, ro1, po1, ro0, po0]
         0xE400-0xE7FF:
                          Flip=[0,1,0,0,1,0,0]
                                                  Integer=[
                                                                                   1, ro6, po6, ro4, po4, ro3, po3, ro1, po1, ro0, po0]
         0xE000-0xE3FF:
                          Flip=[0,0,1,0,1,0,0]
                                                  Integer=[
                                                                                   0, ro6, po6, ro5, po5, ro3, po3, ro1, po1, ro0, po0]
        0xDC00-0xDFFF:
                         Flip=[0,0,0,1,1,0,0]
                                                  Integer=[
                                                                                    1, ro6, po6, ro5, po5, ro4, po4, ro1, po1, ro0, po0]
        0xD800-0xDBFF:
                         Flip=[1,0,0,0,0,1,0]
                                                 Integer=[
                                                                                    0, ro5, po5, ro4, po4, ro3, po3, ro2, po2, ro0, po0]
       0xD400-0xD7FF:
                         Flip=[0,1,0,0,0,1,0]
                                                 Integer=[
                                                                                    1, ro6, po6, ro4, po4, ro3, po3, ro2, po2, ro0, po0]
       0xD000-0xD3FF:
                        Flip=[0,0,1,0,0,1,0]
                                                                                    0, ro6, po6, ro5, po5, ro3, po3, ro2, po2, ro0, po0]
                                                 Integer=[
                        Flip=[0,0,0,1,0,1,0]
                                                                                    1, ro6, po6, ro5, po5, ro4, po4, ro2, po2, ro0, po0]
       0xCC00-0xCFFF:
                                                 Integer=[
      0xC800-0xCBFF:
                        Flip=[0,0,0,0,1,1,0]
                                                 Integer=[
                                                                                    0, ro6, po6, ro5, po5, ro4, po4, ro3, po3, ro0, po0]
      0xC400-0xC7FF:
                       Flip=[1,0,0,0,0,0,1]
                                                 Integer=[
                                                                                    1, ro5, po5, ro4, po4, ro3, po3, ro2, po2, ro1, po1]
     0xC000-0xC3FF:
                       Flip=[0,1,0,0,0,0,1]
                                                Integer=[
                                                                                    0, ro6, po6, ro4, po4, ro3, po3, ro2, po2, ro1, po1]
     0xBC00-0xBFFF:
                       Flip=[0,0,1,0,0,0,1]
                                                Integer=[
                                                                                    1, ro6, po6, ro5, po5, ro3, po3, ro2, po2, ro1, po1]
    0xB800-0xBBFF:
                      Flip=[0,0,0,1,0,0,1]
                                                Integer=[
                                                                                    0, ro6, po6, ro5, po5, ro4, po4, ro2, po2, ro1, po1]
    0xB400-0xB7FF:
                      Flip=[0,0,0,0,1,0,1]
                                                Integer=[
                                                                                    1,ro6,po6,ro5,po5,ro4,po4,ro3,po3,ro1,po1]
   0xB000-0xB3FF:
                      Flip=[0,0,0,0,0,1,1]
                                                                                    0, ro6, po6, ro5, po5, ro4, po4, ro3, po3, ro2, po2]
                                                Integer=[
   0xA000-0xAFFF:
                     Flip=[1,0,0,0,0,0,0]
                                                Integer=[
                                                                           0, ro5, po5, ro4, po4, ro3, po3, ro2, po2, ro1, po1, ro0, po0]
  0x9000-0x9FFF:
                     Flip=[0,1,0,0,0,0,0]
                                                Integer=[
                                                             1,
                                                                           1, ro6, po6, ro4, po4, ro3, po3, ro2, po2, ro1, po1, ro0, po0]
  0x8000-0x8FFF:
                     Flip=[0,0,1,0,0,0,0]
                                               Integer=[
                                                                           0, ro6, po6, ro5, po5, ro3, po3, ro2, po2, ro1, po1, ro0, po0]
 0x7000-0x7FFF:
                     Flip=[0,0,0,1,0,0,0]
                                               Integer=[
                                                                           1, ro6, po6, ro5, po5, ro4, po4, ro2, po2, ro1, po1, ro0, po0]
 0x6000-0x6FFF:
                    Flip=[0,0,0,0,1,0,0]
                                               Integer=[
                                                                           0, ro6, po6, ro5, po5, ro4, po4, ro3, po3, ro1, po1, ro0, po0]
0x5000-0x5FFF:
                    Flip=[0,0,0,0,0,1,0]
                                               Integer=[
                                                                           1, ro6, po6, ro5, po5, ro4, po4, ro3, po3, ro2, po2, ro0, po0]
0x4000-0x4FFF:
                   Flip=[0,0,0,0,0,0,1]
                                               Integer=[
                                                                           0, ro6, po6, ro5, po5, ro4, po4, ro3, po3, ro2, po2, ro1, po1]
0x0000-0x3FFF:
                   Flip=[0,0,0,0,0,0,0]
                                                                 0, ro6, po6, ro5, po5, ro4, po4, ro3, po3, ro2, po2, ro1, po1, ro0, po0]
                                               Integer=[
```


"Don't

Even Worry

About It"

Eco-System Is Developed for Tools

Three-Phase Signals

Anatomy of a Packet Transmission

Practical Experiences

Tx: Both Mapping and Encoding Before Serializer

Rx: Avoiding False Sync Detection (Problem Statement)

Rx: Avoiding False Sync Detection (Solution)

Detect SYNC with Pre-End as Marker for Start of Transmission

CSI-2 Long Packets in C-PHY: The Invisible SYNC

Integers	0x81 39 •••
Integers - 2 lanes	0x8139
distributed	0x80F0 SYNC 0x8139 0x8192 SYNC 0x0302 0x0706

DSI-2 Sample Protocol Analyzer Trace

DSI-2 Sample Protocol Analyzer Trace

Key Takeaways

Tx mapping and encoding in parallel domain

Rx false sync avoidance required pre-begin monitoring

Packet header definition required careful design of SYNC manipulation (both Tx and Rx)

CSI-2 & DSI-2 treat SYNC insertion differently

April 10, 2014: World's First C-PHY Interoperability!

Leading Image Sensor Manufacturer Test Chip (Tx)

First Packet Received

First Eye Diagram

