Original Spark: Three Phase Encoding!

1 Unit Interval of Data

2.285 Bits of Information
||l|

George Wiley, Qualcomm

mipidevcon

Basic Concept of Three Phase Encoding

mipidevcon

Three Voltage Levels Per Wire Ensure Proper Differential Reception

Always-Toggle Design Allows for Simple Clock Recovery (100\% Transition Density)

mipidevCon

Key Takeaways

Three-level single-ended signaling

Non-deterministic transitions based on self-clocked mapping and encoding algorithm

mipidEVCON

Evolution from D-PHY (1 Lane, 4 Wires)

mipidEVCON

Evolution from D-PHY (1 Lane, 4 Wires)

Evolution from D-PHY (1 Lane, 4 Wires)

mipidevCon

Evolution from D-PHY (1 Lane, 4 Wires)

mipidevcon

Architecturally Flexible

Source: MIPI Alliance

mipidevCon

C-PHY Data Types

Wire States

- A wire state is the collection of A, B, and C
- 6 possible wire states

ANALOG			DIGITAL (3 bits)			
A	B	C	A>B	B>C	C>A	Wire state name
HIGH	LOW	MID	1	0	0	+x
LOW	HIGH	MID	0	1	1	$-\mathbf{x}$
MID	HIGH	LOW	0	1	0	+y
MID	LOW	HIGH	1	0	1	$-\mathbf{y}$
LOW	MID	HIGH	0	0	1	$\mathbf{+ z}$
HIGH	MID	LOW	1	1	0	$\mathbf{- z}$

Symbols: Now We're Transmitting!

- A symbol represents a transition between two wire states
- 5 possible symbols

	Symbol (3 bits)		
	Flip	Rotate	Polarity
$\mathbf{0}$	0	0	0
$\mathbf{1}$	0	0	1
$\mathbf{2}$	0	1	0
$\mathbf{3}$	0	1	1
$\mathbf{4}$	1	DC	DC

Example:

$$
+x-1 \rightarrow-z
$$

Flip	
0	-
1	Same letter, toggle sign.

Rotate	
0	Decr. letter
1	Incr. letter

Polarity	
0	-
1	Toggle sign

mipidEVCON

Mapping 7 Symbols \longleftrightarrow 16-bit Integers

- C-PHY defines a mapping between 7-symbol words and 16-bit integers

Number of 7-symbol words: Number of 16-bit integers:

$$
5^{7}=78125 \quad>\quad 2^{16}=65536
$$

mipiDEVCON

Well Defined Algorithms from MIPI Alliance

mipidevCon

Even Worry About lt"

mipidevcon

Eco-System Is Developed for Tools

Three-Phase Signals

mipidevcon

Anatomy of a Packet Transmission

LP-111
LP-000

Data Payload

ヘ
Preparation for HS
Transmission

Start of Transmission Marker

mipidevCon

Tx: Both Mapping and Encoding Before Serializer

mipidevcon

Rx: Avoiding False Sync Detection (Problem Statement)

Tx With Short Prepare

Tx With Long Prepare

LP-111

$3 \times 3 \times 3 \times 3 \times 3 \times 3 / 3 \times 3 \times 3 \times 3 \times 4 \times 4 \times 4 \times 4 \times 4 \times 3$

mipidevCon

Rx: Avoiding False Sync Detection (Solution)

Detect SYNC with Pre-End as Marker for Start of Transmission

mipidevcon

CSI-2 Long Packets in C-PHY

mipidevcon

CSI-2 Long Packets in C-PHY

mipidevcon

CSI-2 Long Packets in C-PHY

mipidevcon

CSI-2 Long Packets in C-PHY

mipidevCon

CSI-2 Long Packets in C-PHY: The Invisible SYNC

mipidevcon

DSI-2 Long Packets in C-PHY

Integers
0×8139

Integers - 2 lanes distributed

mipidevcon

DSI-2 Long Packets in C-PHY

Integers
0×8139 •••

Integers - 2 lanes distributed

mipidevcon

DSI-2 Long Packets in C-PHY

mipidevcon

DSI-2 Long Packets in C-PHY

mipidevcon

DSI-2 Sample Protocol Analyzer Trace

mipidevcon

DSI-2 Sample Protocol Analyzer Trace

믈 CPHY DataCapture: Run_2016-08-05_1129_2lane/dsiDataCapture1

HS_immediate
() lane1 lane2 lane3 lane4
Go To: Burst\#.

HS Bursts DSI Packets

Burst ID	NumData	PreBegin	ProgSeq	PreEnd	Post	NumBits	SyncOffset	PostOffset	DSI Packets	\wedge
0	20306	97	14	7	63	144320	223	142372	$\underline{21}$	
1	122808	97	14	7	60	861824	213	859876	121	
2	122808	97	14	7	59	861760	198	859861	127	
3	122808	97	14	7	64	861824	249	859912	127	
4	122808	97	14	7	61	861824	235	859898	118	
5	122808	97	14	7	57	861824	224	859887	108	\checkmark

Burst 0 Detail

$\bigcirc \times 8=223$	k<	<	<	>	>>	>>1	SYNC	POST	PKT

wireAB: 101010001101111110110010101101110100101011000001101010101011011110110101000010100011011000110100000001001010001101101011 wireBC: 101010100010101001000101010011001001010100110111000111111110110101101110011100001110110101011001011010010100111011011101 wirecA: 010101110110010100101101010110010011010101101010111101000101101011011000101001010101101110000011101100100001010110110000

Time domain view illustrates
 C-PHY byte ordering

mipidevcon

Key Takeaways

Tx mapping and encoding in parallel domain
Rx false sync avoidance required pre-begin monitoring

Packet header definition required careful design of SYNC manipulation (both Tx and Rx)

CSI-2 \& DSI-2 treat SYNC insertion differently

mipidEVCON

April 10, 2014: World's First C-PHY Interoperability!

First Packet Received

First Eye Diagram

