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MIPI C-PHY

• At first glance it seems a bit… unusual!
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Summary
• MIPI C-PHY, Brief Overview.
• Unique properties of the physical layer 

• Some random but interesting tidbits about C-PHY
• Why things are the way they are (beyond the scope of the specs)
• (a little bit of “secret sauce”). 

• MIPI C-PHY Benefits and Value for Camera and Display. 
• Applications. 
• Roadmap.
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MIPI C-PHY Overview
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Encoding & Mapping
• 6 Wire States; 5 possible transitions from each.

• log2(5) @ 2.3219 bits/symbol are possible, 
C-PHY uses 16÷7 @ 2.2857 bits/symbol

• Mapping converts 16-bit word to 7 symbols. 
• 16 bits Þ 216 = 65,535 states, 

7 symbols Þ 57 = 78,125 states.
• 12,589 states left over; @0.0362 bits/symbol are wasted!

• Actually, what’s left over goes to good use! Will explain later. 
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MIPI C-PHY & MIPI D-PHY Similarities
• Close cousins, there are a lot of similarities, and some differences.

• Things that are the same (or almost the same): 
• Document section #’s correspond to the same type of parameters/items. 

• The D-PHY spec was used as a template for the first C-PHY spec!

• LP (Low-Power) Mode is identical, functional definition & electrical specs. 
• (C-PHY LP Mode has a 3rd wire, but it doesn’t do much.)

• Channel models are common between the specs
• (Interconnect and Lane Configuration specs are nearly the same.)

• PHY-Protocol Interface definition has a lot in-common. 
• (Many signals are defined using common language.) 

• Similar High-Speed Mode voltage levels. 
• A dual-mode C/D-PHY driver or receiver can be built to share the same pins. 

• Things that are different: 
• High-Speed Data encoding is completely different. 
• High-Speed timing specs are unique to C-PHY encoding. 
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C-PHY & D-PHY Global Timing
• Similar signaling going into and out of HS Mode.
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C-PHY/D-PHY Pin Sharing
• C-PHY & D-PHY can co-exist on the same AP pins. 

• Mode bit at system boot configures as either C-PHY or D-PHY mode. 
• Electrical Specs are similar. 
• Timing/encoding is completely different. 
• Low-Power Modes in C-PHY & D-PHY are identical. 

11

C-PHY/D-PHY
Pin Sharing



Mapping Function
• Looks really complicated, but it’s not. 

• For a human: it’s complicated. For a circuit implementation: it’s easy. 

• For human understanding, an intuitive mapping could have been: 
• A base-5 number representation. (But base-5 would be a more complex circuit.) 

• The C-PHY Mapper implementation:
• Has no arithmetic operations, 

no carry or look-ahead.  
• Reduces to simple combinatorial logic, no states. 
• Can be pipelined easily. 
• The spacing of unused code words is 

convenient for other functions. 
(a topic for another day)

• A complete implementation using 4-to-1 muxes
and small look-up table is provided in the spec.

• Or  just plug the diagram on the right into 
logic synthesis to create the RTL.  
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0x0000

0x3fff
0x4000

0x4fff
0x5000

0x5fff
0x6000

0x6fff
0x7000

0x7fff
0x8000

0x8fff
0x9000

0x9fff
0xa000

0xafff
0xb000 to 0xb3ff

(16384)

(4096)

(4096)

(4096)

(4096)

(4096)

(4096)

(4096)

(1024)
(1024)
(1024)
(1024)
(1024)
(1024)
(1024)
(1024)
(1024)
(1024)
(1024)
(1024)
(1024)
(1024)
(1024)
(1024)
(1024)
(1024)
(1024)
(1024)

0xb400 to 0xb7ff
0xb800 to 0xbbff
0xbc00 to 0xbfff
0xc000 to 0xc3ff
0xc400 to 0xc7ff
0xc800 to 0xcbff
0xcc00 to 0xcfff
0xd000 to 0xd3ff
0xd400 to 0xd7ff
0xd800 to 0xdbff
0xdc00 to 0xdfff
0xe000 to 0xe3ff
0xe400 to 0xe7ff
0xe800 to 0xebff
0xec00 to 0xefff
0xf000 to 0xf3ff
0xf400 to 0xf7ff
0xf800 to 0xfbff
0xfc00 to 0xffff

Flip[6:0]==0x00==[0,0,0,0,0,0,0]

Flip[6:0]==0x01==[0,0,0,0,0,0,1]

Flip[6:0]==0x02==[0,0,0,0,0,1,0]

Flip[6:0]==0x04==[0,0,0,0,1,0,0]

Flip[6:0]==0x08==[0,0,0,1,0,0,0]

Flip[6:0]==0x10==[0,0,1,0,0,0,0]

Flip[6:0]==0x20==[0,1,0,0,0,0,0]

Flip[6:0]==0x40==[1,0,0,0,0,0,0]

Flip[6:0]==0x03==[0,0,0,0,0,1,1]
Flip[6:0]==0x05==[0,0,0,0,1,0,1]
Flip[6:0]==0x09==[0,0,0,1,0,0,1]
Flip[6:0]==0x11==[0,0,1,0,0,0,1]
Flip[6:0]==0x21==[0,1,0,0,0,0,1]
Flip[6:0]==0x41==[1,0,0,0,0,0,1]
Flip[6:0]==0x06==[0,0,0,0,1,1,0]
Flip[6:0]==0x0a==[0,0,0,1,0,1,0]
Flip[6:0]==0x12==[0,0,1,0,0,1,0]
Flip[6:0]==0x22==[0,1,0,0,0,1,0]
Flip[6:0]==0x42==[1,0,0,0,0,1,0]
Flip[6:0]==0x0c==[0,0,0,1,1,0,0]
Flip[6:0]==0x14==[0,0,1,0,1,0,0]
Flip[6:0]==0x24==[0,1,0,0,1,0,0]
Flip[6:0]==0x44==[1,0,0,0,1,0,0]
Flip[6:0]==0x18==[0,0,1,1,0,0,0]
Flip[6:0]==0x28==[0,1,0,1,0,0,0]
Flip[6:0]==0x48==[1,0,0,1,0,0,0]
Flip[6:0]==0x30==[0,1,1,0,0,0,0]
Flip[6:0]==0x50==[1,0,1,0,0,0,0]

[0,1,0,0, ro6, po6, ro5, po5, ro4, po4, ro3, po3, ro2, po2, ro1, po1]

[0,0, ro6, po6, ro5, po5, ro4, po4, ro3, po3, ro2, po2, ro1, po1, ro0, po0]

[0,1,0,1, ro6, po6, ro5, po5, ro4, po4, ro3, po3, ro2, po2, ro0, po0]

[0,1,1,0, ro6, po6, ro5, po5, ro4, po4, ro3, po3, ro1, po1, ro0, po0]

[0,1,1,1, ro6, po6, ro5, po5, ro4, po4, ro2, po2, ro1, po1, ro0, po0]

[1,0,0,0, ro6, po6, ro5, po5, ro3, po3, ro2, po2, ro1, po1, ro0, po0]

[1,0,0,1, ro6, po6, ro4, po4, ro3, po3, ro2, po2, ro1, po1, ro0, po0]

[1,0,1,0, ro5, po5, ro4, po4, ro3, po3, ro2, po2, ro1, po1, ro0, po0]

[1,0,1,1,0,0, ro6, po6, ro5, po5, ro4, po4, ro3, po3, ro2, po2]
[1,0,1,1,0,1, ro6, po6, ro5, po5, ro4, po4, ro3, po3, ro1, po1]
[1,0,1,1,1,0, ro6, po6, ro5, po5, ro4, po4, ro2, po2, ro1, po1]
[1,0,1,1,1,1, ro6, po6, ro5, po5, ro3, po3, ro2, po2, ro1, po1]
[1,1,0,0,0,0, ro6, po6, ro4, po4, ro3, po3, ro2, po2, ro1, po1]
[1,1,0,0,0,1, ro5, po5, ro4, po4, ro3, po3, ro2, po2, ro1, po1]
[1,1,0,0,1,0, ro6, po6, ro5, po5, ro4, po4, ro3, po3, ro0, po0]
[1,1,0,0,1,1, ro6, po6, ro5, po5, ro4, po4, ro2, po2, ro0, po0]
[1,1,0,1,0,0, ro6, po6, ro5, po5, ro3, po3, ro2, po2, ro0, po0]
[1,1,0,1,0,1, ro6, po6, ro4, po4, ro3, po3, ro2, po2, ro0, po0]
[1,1,0,1,1,0, ro5, po5, ro4, po4, ro3, po3, ro2, po2, ro0, po0]
[1,1,0,1,1,1, ro6, po6, ro5, po5, ro4, po4, ro1, po1, ro0, po0]
[1,1,1,0,0,0, ro6, po6, ro5, po5, ro3, po3, ro1, po1, ro0, po0]
[1,1,1,0,0,1, ro6, po6, ro4, po4, ro3, po3, ro1, po1, ro0, po0]
[1,1,1,0,1,0, ro5, po5, ro4, po4, ro3, po3, ro1, po1, ro0, po0]
[1,1,1,0,1,1, ro6, po6, ro5, po5, ro2, po2, ro1, po1, ro0, po0]
[1,1,1,1,0,0, ro6, po6, ro4, po4, ro2, po2, ro1, po1, ro0, po0]
[1,1,1,1,0,1, ro5, po5, ro4, po4, ro2, po2, ro1, po1, ro0, po0]
[1,1,1,1,1,0, ro6, po6, ro3, po3, ro2, po2, ro1, po1, ro0, po0]
[1,1,1,1,1,1, ro5, po5, ro3, po3, ro2, po2, ro1, po1, ro0, po0]

po0 Þ Polarity[0]
po1 Þ Polarity[1]
po2 Þ Polarity[2]
po3 Þ Polarity[3]
po4 Þ Polarity[4]
po5 Þ Polarity[5]
po6 Þ Polarity[6]

ro0 Þ Rotation[0]
ro1 Þ Rotation[1]
ro2 Þ Rotation[2]
ro3 Þ Rotation[3]
ro4 Þ Rotation[4]
ro5 Þ Rotation[5]
ro6 Þ Rotation[6]

Legend for abbreviated bit values above:

Composition of 16-bit value, Tx_Data[15:0] or Rx_Data[15:0]

[data15, data14, data13, data12, data11, data10, data9, data8, data7, data6, data5, data4, data3, data2, data1, data0]

Mapping
Circuit design



Why the Mapper?
• Hypothetically, let’s explore this…
• Assume we had used only 4 states per symbol instead of 5. 
• Translation of symbols to words becomes trivial. 
• Each symbol would encode 2 bits Þ 8 symbols represent 16 bits

• Hypothetical case would be 8 symbols that represent 16 bits
• Instead of 7 symbols that represent 16 bits

• Would have many more unused states & wasted capacity
• Log2(5) – 2 @ 0.3219 bits/symbol would be lost;  
• Instead of Log2(5) - (16/7) @ 0.0362 bits/symbol currently unused. 

• Increase link capacity by more than 14%, at the cost of:
• Some digital circuits that perform the mapping function. A good tradeoff!  
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C-PHY Triggered Eye Concept
• Trigger at first zero-crossing of AB, BC or CA.

• The right-most point of the eye interior aligned with the 
first zero crossing trigger point. (First Transition)

• Capture the received data in the Rx just prior to the 
trigger point. 

• 1, 2 or 3 Transitions at each UI boundary. 
• When 2 or 3 Transitions, they are often 

staggered in time. Caused by: 
• 2-Transition case: Weak-to-Strong & Strong-to-Weak.
• Slight differences in rise and fall times between the three 

signals of the lane (DCD), and ISI.
• Slight differences in signal propagation times between 

the combinations of signal pairs received (e.g. A-B, B-C, 
and C-A). 
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Symbol Clock Recovery
• Clock edge is at the first zero-crossing (the Trigger Point).
• Ignore subsequent edges in the same UI. 

• Zero-crossings following the first zero-crossing are ignored. 
• (For 2 or 3 Transition symbols, only the 1st transition is used for clock recovery.) 

• Data is sampled just prior to the Trigger Point. 

15

Trigger Point, at 1st zero-crossing

“strong 1”

“weak 1”

“strong 0”

“weak 0”

Zero Crossing Eye Interior

Recovered clock edge is at this Trigger Point.
Data is sampled just prior to the Trigger Point. 

Clock 
Recovery



Properties of the Preamble
• The first field of the burst. 
• All 3’s. Single-transition symbols. 
• Simplifies Clock Recovery start-up.
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Inter-Lane Skew Impact
• Clock timing embedded in each Lane. Tolerant of Inter-Lane skew.

• Small elastic buffer facilitates data alignment. 

• Important characteristic for Lane grouping flexibility.
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Built-in Test Capability
• 19 pages in the C-PHY spec dedicated to built-in test (of 140p total) 
• Control/status register definitions, PRBS definitions, test data 

sequence definitions and examples.
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Built-in Test Registers
• Detailed Register Definitions, per-Lane and Global Registers 

• But physical access to registers is the system designer’s choice. 
• Register functions are standardized, but layer to access the registers can be defined 

based on product requirements/convenience.

• Control: Select test or normal operation, select PRBS & starting seed, 
define debug pattern.

• Read: burst status, word or symbol error count, first error location. 
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Example, Test Configurations
• Showing a variety of different methods to access the test registers. 
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Differential or Single-Ended?
• We’ve had many arguments about this. J
• The driver has the appearance of being single-ended

• It’s clearly different than a classic differential driver, however: 

• The average of the three outputs is the midpoint voltage: !!"!""!#
#

= 𝑉$%&'

• The sum of current through all three wires = zero. 
• Differential Receivers are used to receive the signal at the Rx side.
• System has low emissions from any common-mode signal component. 
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D-PHY Common-Mode Filter
• Differential filter, shown for comparison purposes. 
• Filter attenuates common-mode noise, but not the differential signal. 
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C-PHY Common-Mode Filter
• Similar general concept as the differential common-mode filter, but 

magnetics are different.
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MIPI C-PHY Benefits & Value



MIPI C-PHY Benefits
• Performance (bit rate 2.28x the signaling rate, e.g. 1Gsym/s = 2.28Gbps)
• Pins

• Enables fewer pins/balls on AP (due to higher performance and flexibility)
• Coexists on same pins with existing D-PHY. 

• Flexibility
• Embedded clock enables assigning lanes to any port on the AP (flexible Lane 

(trio) to camera ISP mapping and display link mapping. 

• Power
• Qualcomm simulations/measurements show about a 20-50% power reduction for 

Tx+Rx, depending on configuration.

• Interference (Low Emissions)
• Embedded clock eliminates clock spur emissions. 

• Built-in Test
• Extensive built-in test capability. 



C-PHY System Benefits, Display Example

At the Same Link Rate, C-PHY has:
• 40% fewer connections
• 12.5% Lower Toggle Rate/Lane
• Lower Power Consumption 
• No Emissions from a Clock Lane

C
D
D

D
D

T

T

1.0 Gbps/Lane

4 x 1.0 = 4.0 Gbps/Link

2 x 0.875 x (16/7) = 4.0 Gbps/Link
0.875 Gsps/Lane

Equal Bits/Second12.5% Lower
Toggle Rate

40% Fewer
Signals

Lower Power Consumption

Clock Lane Emissions

C-PHY



Flexibility to Reassign Lanes
• C-PHY Lanes (Trios) easily reconfigured to different AP Links.
• Since C-PHY has embedded clock, there’s no limitation to associate data 

lanes with a clock lane.
• Easy to mux PHY Lanes (Trios) to Lane Merge/Distribution functions in Protocol Layer. 
• Can choose allocation of Lanes (Trios) to Links via register configuration.
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Camera Example - Pins, Power & Speed
• C-PHY v1.0, D-PHY v1.2. 
• Savings of pins, power, or link rate reduction.

Current savings is
Tx & Rx combined.



Camera Example - Pins, Power & Speed
• C-PHY v1.1, D-PHY v2.0. 
• Savings of pins, power, or link rate reduction.

Current savings is
Tx & Rx combined.



C-PHY Low Emissions
• No clock interference due to embedded clock
• No observable emissions/EMI due to non-differential signaling
• A few simple configurations of D-PHY and C-PHY were evaluated for 

emissions
• Lanes routed on a board, in close proximity to WWAN Antenna
• For comparison purposes only, as Absolute levels depend on many complex conditions in 

a real device
• Higher emissions from the D-PHY clock lane correlates with real-world designs



MIPI C-PHY Applications



Drone Camera Connection Example
• One 20 Mpixel main camera (2 Lanes, 6 wires).
• 8 navigation cameras (1 Lane each, 3 wires each). 

Application
Processor

20 Mpixel

CSI-2
Link #1

CSI-2
Link #2

CSI-2
Link #8

CSI-2
Link #7

CSI-2
Link #3

CSI-2
Link #4

CSI-2
Link #6

CSI-2
Link #5

CSI-2
Link #9

10 Lanes Total



The Trend to Fewer Pins
• The conventional MIPI D-PHY Link configuration has 

been 4 Data + 1 Clock.
• 10 pins total.

• Reduction to 6 pins
• A majority of 10 to 20 Mpixel image sensors can be supported 

using 1 or 2 C-PHY Lanes. 
• Low-res image sensors that have sensitivity to high channel rates 

can be supported using 2 Lanes. 
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MIPI C-PHY Roadmap



C-PHY Feature Roadmap

Copyright © 2016 MIPI Alliance. All rights reserved.

Category Feature v1.0 v1.1 v1.2 next

Board Adoption 4Q14 1Q16 ~4Q16
Target

Speed Symbol Rate (Gsps/Lane) * 2.5 2.8 ~3.5

Symbol Rate

C-PHY/D-PHY Unified Channel Models P P P
Tx Timing by Tx Eye Diagram P P P
Basic Pre-emphasis P P P
PVT Calibration for Rx P P
Additional UI Jitter (RCLK jitter) specs P P
Pre-emphasis/De-emphasis, Gen 2 P P
Technology Enhancements to Increase the Symbol Rate P

Power Reduction
Unterminated Mode P P P

Reduced Amplitude HS Mode option (same VOD as D-PHY) P P

LP Mode Alternate Low-Power Mode P P

Enhanced Function

Co-exists with D-PHY on same device pins P P P P

Track D-PHY SG Activity to Keep C/D-PHY Specs In-Sync P P P P

16-bit/32-bit PPI P P P

Optical Interconnect P P P

HS Reverse Mode P P

Low Latency Delimiter (LLPD), for Camera P P

Various Functional Enhancements Planned P

* The stated Symbol Rate is with the Standard Channel except v1.0 which is the rate with the Legacy Channel



Summary



C-PHY Ecosystem 
• Application Processor companies 

• Qualcomm, others in development

• Image Sensors 
• OmniVision, Sony, others in development

• Display Driver ICs 
• In development

• Test equipment companies 
• Introspect, Keysight, Tektronix, The Moving Pixel Company, others in development

• Silicon IP 
• In development

• System components 
• Common-mode filters: Murata, Panasonic, TDK
• C-PHY switches



Summary
• Satisfies all KPI’s… 

• Pins (Cost), Architectural Flexibility, Performance, 
Power, Low Emissions

• Suitable for all product tiers
• C/D-PHY combo into high tier products first, 

now migrating to mid and low-tiers.



Thank You



Backup Material



CSI-2 and DSI/DSI-2 Ecosystems
• Protocol specs, CSI-2 and DSI (now DSI-2) reference C-PHY & D-PHY. 

• Huge existing ecosystems for Camera and Display are preserved. 

• Camera & Display protocol specs have been updated to include C-PHY.  
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CSI-2 and DSI-2 Details
• How Camera & Display protocol specs reference both PHY’s.  

• Low-Level packet header formats are a little different for C-PHY vs. D-PHY. 
• Application-Specific Payloads of the Packets are identical.
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C-PHY

D-PHY
Packet Data 
is identical

Packet Header Formats are Different. 
But Header Parameter Fields are the same. 




