Achieving Optimal Energy and Power Efficiency with MIPI I3C®

Tim McKee
MIPI I3C Working Group Chair

Michele Scarlatella
MIPI IoT Technical Consultant
Agenda

- I3C / I3C Basic Introduction
- Power and Energy Performance Improvements
- I3C Bus Transactions
- Additional Resources
- Q & A
I3C / I3C Basic Introduction
MIPI I3C Interface - Introduction

Fast Growing Sensor Markets
- Mobile Consumer Wearables
- IoT Industrial IoT
- Automotive Transportation

Smarter, more capable
Avg >20 sensors/device (projected)
- Accelerometer
- Gyroscope
- Magnetometer
- Ambient light
- Pressure
- Humidity
- Temperature
- .. others

I3C a scalable, cost-effective interface
- Targeting mobile & IoT devices, automotive, server manageability
- Simplify connecting and managing multiple sensors in a device
- Reduced pin count and signal paths
- CMOS I/O Compatible
- Support for low-power, high-speed communication (vs. I2C/SPI/UART)
- Low complexity target
- Compatibility with I2C devices
The MIPI I3C Interface Ecosystem

Specifications

I3C v1.1.1
- Available to MIPI members
- FAQ & several Application Notes available
- Released Jun 2021

I3C Basic v1.1.1
- Rich subset of I3C
- Feature list [here](#)
- Publicly available by complying to MIPI IPR
- Released Jul 2021

I3C v1.1.1
- Host Controller Interface
 - Facilitates connection of peripheral devices to an application processor
 - Publicly available to developers and the open-source community
 - Available in mainstream Linux kernel tree (v5.x)

I3C CTS v1.0
- Conformance Test Suite
 - Improves interoperability among different products
 - Strong focus on SDR-only bus transactions, error detection and recovery
 - Continuous evolution by expanding test scopes

Software & Test

I3C HCI v1.1
- Host Controller Interface
 - Facilitates connection of peripheral devices to an application processor
 - Publicly available to developers and the open-source community
 - Available in mainstream Linux kernel tree (v5.x)

I3C CTS v1.0
- Conformance Test Suite
 - Improves interoperability among different products
 - Strong focus on SDR-only bus transactions, error detection and recovery
 - Continuous evolution by expanding test scopes

Integration

- Debug for IoT v1.0
- DisCo for I3C
- I3C over Camera interface
- JEDEC – SPD (Serial Presence Detect)
- DMTF - MCTP I3C Transport Binding Specification
- ETSI for Smart Secure Platform
- PCIe sideband (WIP)
- More to come!
MIPI I3C Key Features

Fast Efficient Communication Channel
- Multidrop SDA/SCL 2-wire interface
 - 12.5 MHz max clock rate
 - 1.2V-3.3V Voltage supported
- Dynamic switch between pull-up/push-pull/Hi-Z
- Line coding modes for higher throughput:
 - SDR, HDR-, HDR-TSL, BT
 - Multilane x2, x4
- Low EMI
- Physical layer CMOS I/O compatible

Advanced Functions
- Multi-operation via repeated START
- Unicast, Broadcast, Multicast messages
- In-Band Interrupt with qualified information
- Device reset
- Hot-join
- Error detection (parity, CRC)

System Management
- Primary & Secondary Controllers
- Dynamic Address Assignment including Group Addressing
- Device Code Assignment (by MIPI)
- Descriptors:
 - DCR Device Configuration Register
 - BCR Bus Configuration Register
 - SETBUSCON Bus Context Operation

Backward Compatibility
- Mixed-bus operation: I3C and I2C devices
 - Static address space reserved for I2C legacy devices
- Fast operations invisible to I2C thanks to 50 nanosecond spike filter

Introduced in v1.1
Power and Energy Performance Improvements with I3C
Need for Power/Energy Efficiency in IoT Devices

- Many classes of IoT devices work under tight power budget (wearables, in-file data collection units, etc.)
- **Low energy consumption and power efficiency** are key features
 - Low-voltage operation
 - Running on battery
 - Non-rechargeable, targeting several years operation
- **I3C can help solve above challenges**
 - Excellent bus electrical characteristics
 - Handling of synchronous and asynchronous events
 - Selective power management of sub-components
 - System segmentation

I3C features & specs are great help to system designers to architect Power Efficient IoT Devices for their next projects
I3C Bus - Low Energy & Power Features

• **Simple 2-wire interface**
 – helps to keep component count
 – Reduced wire spurious capacitance

• **Operating voltage: 1.2V - 3.3V**
 – Low operating voltage allows use of lowest-voltage components

• **Efficient bus transactions operation**
 – Minimize energy used per bit sent
 – Reduced number of signal transaction
 – Use of Push-Pull driver whenever possible

• **Enable system-level power-efficient architecture**
 – In-Band Interrupt for efficient data acquisition
 – Management of Bus Idle States
Bus Performance for 1kB Transfers

Energy & Transfer Time Improvement vs. I2C

- **Energy Reduction**
 - SDR Mode: 4.3 times lower
 - HDR-TSP mode: 18 times lower

- **Faster Transfer Time**
 - SDR mode: 11 times faster
 - HDR-TSP: 33 times faster

Energy to Transfer 1kB (µJ)

Effective Transfer Time 1kB (msec)
Improving Idle-time with Bus Conditions

Informing Targets of bus idle condition facilitates low power management

- Specific CCC allocated: ENTAS[0..3]
- ENTASx informs Target(s) about low activity intervals
 - 2ms & 50ms idle time can rack up significant power savings

Remark
- ENTASx is only a “suggestion” to Target
- ENTASx does not replace application specific/custom power savings agreements

<table>
<thead>
<tr>
<th>Activity state CCC</th>
<th>Bus Idle time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTAS0</td>
<td>1us</td>
</tr>
<tr>
<td>ENTAS1</td>
<td>100us</td>
</tr>
<tr>
<td>ENTAS2</td>
<td>2ms</td>
</tr>
<tr>
<td>ENTAS3</td>
<td>50m</td>
</tr>
</tbody>
</table>
Efficient Data Acquisition with In-Band-Interrupts (IBI)

IBI allows fast and efficient async data acquisition, and event processing

- Data produced by a target is promptly transferred to upstream controller for further processing
- IBI intended as an efficient mechanism for Targets to grab Controller attention
- Avoids extra dedicated wires, or inefficient polling mechanism
Improving Bus Activity with Segmentation

Segmentation improves overall system efficiency:

- Isolate high activity (HA) Data producers from low-activity (LA) Targets on a pure I3C Bus segment
- I3C Routing Device bridges Red HA bus from Green LA bus
- Reduced load on Primary Controller MPU
Other Power-Saving Features Enabled by I3C

• Hot-Join
 – Allow to selectively manage power-on/off of subsystem

• Device-to-Device Tunneling (D2DT)
 – Allows direct communication between two Targets, assisted by the Controller

• Timing Control
 – Synchronous data acquisition, minimizing uptime of DAQ Target

• ...several others
I3C Bus Transactions

An in-depth look
I3C Bus Electrical States

- I3C bus lines can be in four configurations:
 - Open Drain
 - Push-Pull
 - Hi-Z
 - Hi-Keeper (light pull-up, higher dynamic R)
- SCL line is (almost) always Push-Pull
 - No clock stretching
- SDA is switched dynamically by the Active Controller & Targets between:
 - Open Drain / Push-Pull / Hi-Z / Hi-Keeper

(*) SDA only
I3C Bus Sources of Power Consumption

• Electrical
 – Low Operating voltage: 1.2V - 3.3V
 – Bus capacitance <10pF / device (total 50-100pF)
 – Pull-up: 1.1-2.8 kΩ

• **Factors affecting energy consumption**
 – Open-Drain Pull-down current
 → Minimize pull-down time
 → Use push-pull whenever possible
 – Bus capacitance:
 → Keep short bus length
 → Reduced Capacitance on input pads
 – Push-Pull Switching shoot-through current
 → Optimize IP selection
Typical I3C Bus Transaction

SDA

START | 7h’7E I3C Reserved Address | RnW | ACK | Repeated START | CCC or private data exchange | ACK

SCL

Note: There are a few instances where SCL is in Open drain mode, mostly related to I2C compatibility.
Optimize by Bus Segmentation

- **Isolate I3C high activity devices**
 - Low activity bus & mixed mode I3C/I2C
 - High activity bus pure I3C, individual targets still accessible
- **Better processing efficiency**

Specs ref. v1.1.1 (5.1.9.3.17/20)
Sequential Operations

Multiple Reads in SDR Mode
- Suitable for scheduled interrogation
- Bus idling in between reads

Multiple reads

S=START
Sr=START repeated
P=STOP
p=parity bit
Sequential Operations (2)

Multiple Reads in HDR-DDR Mode
- Faster read
- Reduction of SCL transition (close to \(\div 2\))
- Data protected by 5-bit CRC

Multiple Reads

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>I3C Reserved 7h7E (RnW=1)</td>
</tr>
<tr>
<td></td>
<td>HDR Read Addr. (20bit)</td>
</tr>
<tr>
<td></td>
<td>HDR Read Addr. (20bit)</td>
</tr>
<tr>
<td></td>
<td>HDR Exit</td>
</tr>
</tbody>
</table>

HDR Restart / HDR Exit hardware patterns

- **HDR Restart**: SDA, SCL
- **HDR Exit**: SDA, SCL

Suspend

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr</td>
<td>I3C Reserved 7h7E (RnW=1)</td>
</tr>
</tbody>
</table>

© 2022 MIPI Alliance, Inc.
Power Management with Hot-Join (HJ)

HJ primary use
- Attach device after bus is configured
- Provision exist for late power-up of a target

Improved power management
- Selective powering of sub-units
- Wake-up only when needed
- Wake-up signal can be
 - Out-of-band (HW wire)
 - In-band with Target Reset Action (RSTACT) target reacting to a pre-defined pattern
Power Management with Hot-Join
Wake-up with Target-Reset Sequence

- Single HW detection pattern
- Avoids out-of-bus HW and controls
- Multiple wake-up Targets managed thanks to Dynamic Address Assignment during Hot-Join sequence
Power Management with Hot-Join Joining Sequence

- HJ has similar pattern to In-Band-Interrupt with predefined high-priority address 0x02
- Dynamic Address Assignment need to be executed after x02 Hot-Join opening sequence
- During off-state, target must ensure no power is inadvertently drained thru SDA/SCL wires
Additional Resources
New White Paper

Achieving Power Efficiency in IoT Devices with MIPI I3C

- Introduction to MIPI I3C and I3C Basic Interfaces
- Parameters Affecting Energy Efficiency
- The I3C Electrical Bus
- Optimization by Segmentation
- Improving Idle Time with Bus Conditions
- Efficient Data Acquisition with IBI
- Power Management with Hot-Join
- Efficient Data Transfer with D2DT

resources.mipi.org/download-mipi-whitepaper-power-efficiency-in-iot-with-mipi-i3c
MIPI I3C Additional Information

• MIPI I3C Specification v1.1.1
 – https://members.mipi.org/wg/All-Members/document/84923

• MIPI I3C Basic Specification v1.1.1 Download Page
 – https://resources.mipi.org/mipi-i3c-basic-download

• Conformance Test Suite
 – https://members.mipi.org/wg/All-Members/document/85303 (Member version)
 – https://resources.mipi.org/i3c-test-suite-download (Public version)

• MIPI I3C Host Controller Interface v1.1
 – https://www.mipi.org/specifications/i3c-hci

• MIPI I3C and I3C Basic Frequently Asked Questions
 – https://www.mipi.org/resources/I3C-frequently-asked-questions

• MIPI in Internet of Things (IoT)
 – https://www.mipi.org/internet-things-iot#whitepapers

• MIPI I3C Basic in JEDEC DDR5: A Sum Greater Than Its Parts
 – https://resources.mipi.org/blog/mipi-i3c-basic-in-jedec-ddr5-a-sum-greater-than-its-parts
Get Involved / Sources of Further Information

• **I3C Working Group**
 – Open to MIPI Contributor members (meets Wednesdays 08:00 PT)

• **IoT Interest Group**
 – Open to MIPI Contributor & Adopter members (meets 2nd Thursday of the month 08:00 PT)

• **Contact the I3C Working Group and IoT Interest Group**
 – Email: i3c@mipi.org, iot-group@mipi.org (members)
 – Email: admin@mipi.org (non-members)

• **Website:** https://www.mipi.org/specifications/i3c-sensor-specification
Q&A Session
Thanks for attending!