

IF IT'S NOT MIPI, IT'S NOT MOBILE

Achieving Optimal Energy and Power Efficiency with MIPI I3C[®]

Tim McKee MIPI I3C Working Group Chair

Michele Scarlatella MIPI IOT Technical Consultant

Agenda

- I3C / I3C Basic Introduction
- Power and Energy Performance Improvements
- I3C Bus Transactions
- Additional Resources
- Q & A

I3C / I3C Basic Introduction

MIPI I3C Interface - Introduction

Fast Growing Sensor Markets

Smarter, more capable

Avg >20 sensors/device (projected)

Gyroscope

- Magnetometer
- Ambient light
- Pressure
- 🚯 Humidity
 - Temperature

.. others

I3C a scalable, cost-effective interface

- Targeting mobile & IoT devices, automotive, server manageability
- Simplify connecting and managing multiple sensors in a device
- Reduced pin count and signal paths
- CMOS I/O Compatible
- Support for low-power, high-speed communication (vs. I2C/SPI/UART)
- Low complexity target
- Compatibility with I2C devices

4 © 2022 MIPI Alliance, Inc.

The MIPI I3C Interface Ecosystem

SPECIFICATIONS

I3C v1.1.1

- Available to MIPI members
- FAQ & several Application Notes available
- Released Jun 2021

I3C Basic v1.1.1

- Rich subset of I3C
- Feature list here
- Publicly available by complying to MIPI IPR
- Released Jul 2021

alliance

SOFTWARE & TEST

I3C HCI v1.1

Host Controller Interface

- Facilitates connection of peripheral devices to an application processor
- Publicly available to developers and the open-source community
- Available in mainstream Linux kernel tree (v5.x)

I3C CTS v1.0

Conformance Test Suite

- Improves interoperability among different products
- Strong focus on SDR-only bus transactions, error detection and recovery
- Continuous evolution by expanding test scopes

INTEGRATION

- Debug for IoT v1.0
- DisCo for I3C
- I3C over Camera interface
- JEDEC SPD (Serial Presence Detect)
- DMTF MCTP I3C Transport Binding Specification
- ETSI for Smart Secure Platform
- PCIe sideband (WIP)
- More to come!

MIPI I3C Key Features

Fast Efficient Communication Channel

- Multidrop SDA/SCL 2-wire interface
 - 12.5 MHz max clock rate
 - 1.2V-3.3V Voltage supported
- Dynamic switch between pull-up/push-pull/Hi-Z
- Line coding modes for higher throughput:
 - SDR, HDR-, HDR-TSL, BT
 - Multilane x2, x4
- Low EMI
- Physical layer CMOS I/O compatible

Advanced Functions

- Multi-operation via repeated START
- Unicast, Broadcast, Multicast messages
- In-Band Interrupt with qualified information
- Device reset
- Hot-join
- Error detection (parity, CRC)

System Management

- Primary & Secondary Controllers
- Dynamic Address Assignment including Group Addressing
- Device Code Assignment (by MIPI)
- Descriptors:
 - **DCR** Device Configuration Register
 - BCR Bus Configuration Register
 - SETBUSCON Bus Context Operation

Backward Compatibility

- Mixed-bus operation: I3C and I2C devices
 - Static address space reserved for I2C legacy devices
- Fast operations invisible to I2C thanks to 50 nanosecond spike filter

Power and Energy Performance Improvements with I3C

Need for Power/Energy Efficiency in IoT Devices

1	

- Many classes of IoT devices work under tight power budget (wearables, in-file data collection units, etc.)
- Low energy consumption and power efficiency are key features
 - Low-voltage operation
 - Running on battery
 - Non-rechargeable, targeting several years operation
- I3C can help solve above challenges
 - Excellent bus electrical characteristics
 - Handling of synchronous and asynchronous events
 - Selective power management of sub-components
 - System segmentation

I3C features & specs are great help to system designers to architect Power Efficient IoT Devices for their next projects

I3C Bus - Low Energy & Power Features

Simple 2-wire interface

- helps to keep component count
- Reduced wire spurious capacitance
- Operating voltage: 1.2V 3.3V
 - Low operating voltage allows use of lowest-voltage components

Efficient bus transactions operation

- Minimize energy used per bit sent
- Reduced number of signal transaction
- Use of Push-Pull driver whenever possible

• Enable system-level power-efficient architecture

- In-Band Interrupt for efficient data acquisition
- Management of Bus Idle States

Bus Performance for 1kB Transfers

Energy & Transfer Time Improvement vs. I2C

- Energy Reduction
 - SDR Mode: 4.3 times lower
 - HDR-TSP mode: 18 times lower
- Faster Transfer Time
 - SDR mode: 11 times faster
 - HDR-TSP: 33 times faster

Improving Idle-time with Bus Conditions

Informing Targets of bus idle condition facilitates low power management

- Specific CCC allocated: ENTAS[0..3]
- ENTASx informs Target(s) about low activity intervals
 - 2ms & 50ms idle time can rack up significant power savings

Remark

- ENTASx is only a "suggestion" to Target
- ENTASx does not replace application specific/custom power savings agreements

Activity state CCC	Bus Idle time
ENTASO	1us
ENTAS1	100us
ENTAS2	2ms
ENTAS3	50m

Efficient Data Acquisition with In-Band-Interrupts (IBI)

IBI allows fast and efficient asynch data acquisition, and event processing

- Data produced by a target is promptly transferred to upstream controller for further processing
- IBI intended as an efficient mechanism for Targets to grab Controller attention
- Avoids extra dedicated wires, or inefficient polling mechanism

Improving Bus Activity with Segmentation

alliance

Segmentation improves overall system efficiency:

- Isolate high activity (HA) Data producers from low-activity (LA) Targets on a pure I3C Bus segment
- I3C Routing Device bridges Red HA bus from Green LA bus
- Reduced load on Primary Controller MPU

Other Power-Saving Features Enabled by I3C

• Hot-Join

Allow to selectively manage power-on/off of subsystem

Device-to-Device Tunneling (D2DT)

- Allows direct communication between two Targets, assisted by the Controller
- Timing Control
 - Synchronous data acquisition, minimizing uptime of DAQ Target
- ...several others

I3C Bus Transactions

An in-depth look

15 | © 2022 MIPI Alliance, Inc.

I3C Bus Electrical States

I3C bus lines can be in four configurations:

- Open Drain
- Push-Pull
- Hi-Z
- Hi-Keeper (light pull-up, higher dynamic R)
- SCL line is (almost) always Push-Pull
 - No clock stretching
- SDA is switched dynamically by the Active Controller & Targets between:
 - Open Drain / Push-Pull / Hi-Z / Hi-Keeper

16 | © 2022 MIPI Alliance, Inc.

I3C Bus Sources of Power Consumption

Electrical

- Low Operating voltage: 1.2V 3.3V
- Bus capacitance <10pF / device (total 50-100pF)
- Pull-up: 1.1-2.8 kΩ

Factors affecting energy consumption

- Open-Drain Pull-down current
 - \rightarrow Minimize pull-down time
 - ightarrow Use push-pull whenever possible
- Bus capacitance:

liance

- ightarrow Keep short bus length
- ightarrow Reduced Capacitance on input pads
- Push-Pull Switching shoot-through current
 → Optimize IP selection

Typical I3C Bus Transaction

mipialliance

18 | © 2022 MIPI Alliance, Inc.

Specs ref. v1.1.1 (5.1.9.3.17/20) 19 | © 2022 MIPI Alliance, Inc.

mipialliance

20 | © 2022 MIPI Alliance, Inc.

Power Management with Hot-Join (HJ)

HJ primary use

- Attach device after bus is configured
- Provision exist for late power-up of a target

Improved power management

- Selective powering of sub-units
- Wake-up only when needed
- Wake-up signal can be
 - Out-of-band (HW wire)
 - In-band with Target Reset Action (RSTACT) target reacting to a predefined pattern

Power Management with Hot-Join Wake-up with Target-Reset Sequence

- Single HW detection pattern
- Avoids out-of-bus HW and controls
- Multiple wake-up Targets managed thanks to Dynamic Address Assignment during Hot-Join sequence

Power Management with Hot-Join Joining Sequence

Controller sets SCL Low to complete START

- HJ has similar pattern to In-Band-Interrupt with predefined high-priority address 0x02
- Dynamic Address Assignment need to be executed after x02 Hot-Join opening sequence
- During off-state, target must ensure no power is inadvertently drained thru SDA/SCL wires

Additional Resources

New White Paper

liance

Achieving Power Efficiency in IoT Devices with MIPI I3C

- Introduction to MIPI I3C and I3C Basic Interfaces
- Parameters Affecting Energy Efficiency
- The I3C Electrical Bus
- Optimization by Segmentation
- Improving Idle Time with Bus Conditions
- Efficient Data Acquisition with IBI
- Power Management with Hot-Join
- Efficient Data Transfer with D2DT

resources.mipi.org/download-mipi-whitepaper-powerefficiency-in-iot-with-mipi-i3c

MIPI I3C Additional Information

- MIPI I3C Specification v1.1.1
 - https://members.mipi.org/wg/All-Members/document/84923
- MIPI I3C Basic Specification v1.1.1 Download Page
 - <u>https://resources.mipi.org/mipi-i3c-basic-download</u>
- Conformance Test Suite
 - <u>https://members.mipi.org/wg/All-Members/document/85303</u> (Member version)
 - <u>https://resources.mipi.org/i3c-test-suite-download</u> (Public version)
- MIPI I3C Host Controller Interface v1.1
 - <u>https://www.mipi.org/specifications/i3c-hci</u>
- MIPI I3C and I3C Basic Frequently Asked Questions
 - <u>https://www.mipi.org/resources/I3C-frequently-asked-questions</u>
- MIPI in Internet of Things (IoT)
 - <u>https://www.mipi.org/internet-things-iot#whitepapers</u>
- MIPI I3C Basic in JEDEC DDR5: A Sum Greater Than Its Parts
 - <u>https://resources.mipi.org/blog/mipi-i3c-basic-in-jedec-ddr5-a-sum-greater-than-its-parts</u>

Get Involved / Sources of Further Information

- I3C Working Group
 - Open to MIPI Contributor members (meets Wednesdays 08:00 PT)
- IoT Interest Group
 - Open to MIPI Contributor & Adopter members (meets 2nd Thursday of the month 08:00 PT)
- Contact the I3C Working Group and IoT Interest Group
 - Email: <u>i3c@mipi.org</u>, <u>iot-group@mipi.org</u> (members)
 - Email: <u>admin@mipi.org</u> (non-members)
- Website: https://www.mipi.org/specifications/i3c-sensor-specification

Q&A Session

Thanks for attending!

MIPI I3C INTEROP WORKSHOP 13-14 June 2022

13-14 June 2022 Munich, Germany

30 © 2022 MIPI Alliance, Inc.

