

IF IT'S NOT MIPI, IT'S NOT MOBILE

A-PHY: The Cornerstone of MIPI Automotive System Solutions

Ariel Lasry

Director, MIPI Alliance Board of Directors, Toshiba **Edo Cohen** MIPI A-PHY Subgroup Vice-Lead, Valens

Presentation Outline

About MIPI Alliance Peter Lefkin

MIPI Alliance Managing Director

MIPI A-PHY – System View Ariel Lasry

Director, MIPI Alliance Board of Directors

MIPI A-PHY - Specification Overview Edo Cohen

MIPI A-PHY Subgroup Vice-Lead

• • •

About MIPI Alliance

Peter Lefkin

MIPI Alliance Managing Director

About MIPI Alliance

TODAY'S MIPI MEMBER ECOSYSTEM

CONFIDENTIAL

MIPI Beyond Mobile

alliance

MIPI SPECIFICATIONS IN AUTOMOTIVE

CSI-2

Camera Serial Interface protocol Protocol for cameras, lidar, radar sensors

DSI-2

Display Serial Interface protocol Protocol for smartphone, IOT and automotive displays

C-PHY

3-phase physical layer for CSI-2 & DSI-2

Short-reach physical layer for cameras and displays

D-PHY

Differential physical layer for CSI-2 & DSI-2 Short-reach physical layer for cameras and displays

I3C

Control and data bus protocol and interface

Sensor and general purpose data and control interface within a module

RFFE

RF control protocol Front end control within a wireless module

SoundWire & SWI3S Digital audio and control interface

Audio interface within a module

UniPro for JEDEC UFS

Data transport protocol for UFS over M-PHY

Transport protocol for UFS storage

M-PHY for JEDEC UFS

Differential physical layer for UFS storage Short-reach physical transport for UFS storage

MIPI A-PHY – System View

Ariel Lasry

Director, MIPI Alliance Board of Directors

Auto Industry Transformation

Honda and GM Partner to Develop Mass Produced, Driverless Cars Source: October 4, 2018, Automotive News

alliance

MIPI directly supports CASE via:

- Connected (RFFE, others)
- Automated (A-PHY, CSI-2, others)

<u>CASE:</u>

- Connected Automated
- Shared Electrified
 - Connected: The move to 5G
- Automated: The move to L3 and beyond
- Shared: New OEMs, new business models, new alliances
- Electrified: Tesla and others

And . . .

Safety: Improved government safety regulations (FCWS, AEBS, RVS, LDWS, etc.) Fuel economy: Aggressive regulations

Levels of Driving Automation: MIPI A-PHY Contributes to Levels 2-5, Moving Sensor Data Efficiently

mipialliance

MIPI A-PHY contributes to Levels 2-5

NCAP Regulations Driving Sensors & Display Adoption

- Worldwide NCAP ADAS • standards driving adoption of multiple high data rate "surround sensors"
- Displays for driver viewing of assistance imaging and information also required

Autonomous Driving System/Architecture

CENTRAL CHALLENGE: Transport raw image sensor and/or radar data to fusion processor, and processor/other generated data to the displays

alliance

Data Rates

For camera/image sensors, 10Gbps link could support:

- RAW16 10MP 1 max exposure channel @ 60fps
- RAW 16 2MP 4 max exposure channels @ 60fps

For radar, 12.5Gbps link could support:

- Four "typical" 4-RX-channel (50MS/sec, 12b res)
- Two "max" 4-RX-channel (80MS/sec, 16b res)

For display subsystems, 16Gbps link could support:

• Ultra-HD 3840x2160 24-bits/pixel RGB 4:4:4 60 Hz

What is MIPI A-PHY?

MIPI A-PHY is a physical layer specification targeted for ADAS/ADS surround sensor applications and Infotainment display applications in automotive. Version 1.0 will provide a 15-meter reach and data rates of 2-16 Gbps, with a roadmap to 24, 48 Gbps and beyond.

MIPI A-PHY is the ONLY standard interface to support native camera (CSI-2) and display (DSI-2) interfaces for automotive. An adaptation layer is also being developed for VESA DisplayPort and eDP.

A-PHY Topology Examples

Cameras example with direct connection

Displays example with daisy-chain

^{12 © 2020} MIPI Alliance, Inc.

Challenges To Be Solved Require: A-PHY + MIPI Protocols

Camera sensor		Display
	ECU ECU	
Robust Automotive Long-Reach Link	 PER = 10⁻¹⁸: 1 packet error in ~10,000 car-lifetimes High speed downlink and aggregation to support multiple 4K cameras and dis Asymmetric high speed link with fixed low latency ~6μs @G5 	splays
End to End Functional Safety	 Enabling integration of devices using MIPI protocols over A-PHY in ASIL B or A A-PHY and Protocols (CSI-2, DSI-2) FuSa from Source to Sink 	SIL D systems
End to End Security	 Authentication; prevention of tampering (malicious and non-malicious) Content protection for display applications (HDCP) 	
Heterogeneous Interfaces	 Common support for multiple display protocols: DSI, DisplayPort, eDP, OpenLI Agnostic to source/sink PHY configuration: C-PHY, D-PHY, Lanes count 	DI
mipialliance		13 © 2020 MIPI Alliance, Inc.

MIPI Automotive Stack for A-PHY

• Scalability: Additional PHY Adaptation Layers (PALs) can be developed to expand interoperability

An Overview of A-PHY

Edo Cohen

MIPI A-PHY Subgroup Vice-Chair

Gears and Profiles

- One rate/line-code/modulation per downlink gear
- Single uplink gear
- A-PHY Device supporting Gear N (i.e., N could be 1–5) shall support all lower gears.
- Two noise/performance profiles (with full inter-profile interoperability):
 - Profile 1: Optimized for low cost/power implementations for the lower gears with lower noise immunity and target BER of <10⁻¹²
 - Profile 2: Optimized for vehicle lifespan, link robustness for all gears with high noise immunity and target PER of <10⁻¹⁹

Gear Data Rate	Modulation [One modulation per Gear]	Symbol Rate [GBaud]	Net Application Data Rate [Gbps]
G1 2 Gbps	NRZ-8b/10b	2	1.5
G2 4 Gbps	NRZ-8b/10b	4	3
G3 8 Gbps	PAM4	4	7.2
G4 12 Gbps	PAM8	4	10.8
G5 16 Gbps	PAM16	4	14.4
Uplink, All Gears 100Mbps	NRZ-8b/10b	0.1	0.055 (55Mbps)

High Level Structure

- Native Protocol
 - e.g., CSI-2, DSI-2, I²C, GPIO
- Protocol Adaptation Layer (PAL)
 - Mapping to/from Native Protocol to A-Packet
- APPI
 - Interface between A-PHY Port and PAL
- Data Link Layer
 - Performs A-Packet scheduling, prioritization and forwarding
- Physical Layer
 - Encodes and decodes symbols extracted from A-Packets according to the modulation scheme used per gear
 - Modulated symbols are transmitted and received over the A-PHY interconnect according to the mediumdependent electrical specifications.

	A-Packet								
A-Packet Header							A Desked Device of		
			А-Раске					A-Packet Payload	A-Packet Tail
· .									1
8-bit	8-bit	8-bit	8-bit	8-bit	8-bit	8-bit	8-bit		
Adaptation Descriptor		Placement Descriptor	TX-D	Target Address	МС	Payload Length <mark>(</mark> N)	PHY Header CRC	Payload (K Payload Bytes)	PHY Tail CRC-32

- The A-Packet is structured to carry the Native Protocol data and all information that the A-PHY Data Link Layer requires to perform its functions efficiently.
- Downlink and uplink use the same packet structure.
- Structure optimized supporting multiple protocols aggregation with minimal overhead and latency
- The A-Packet Header contains all required information (e.g., QoS, Priority, Destination, Protocol Type).
- The A-Packet structure:
 - Header 8 Byte including MC (Message Counter)
 - Payload
 - Tail 4 Byte (CRC-32)

mipialliance

Interconnect

- A-PHY is a single lane, point-to-point, serial communication technology
- Support for multiple cable types SDP/Coax
- Power over cable support
- Up to 15m with 4 inline connectors

Low Tx Amplitude - Optimized for Low PSD

TX Amplitudes to over 50 Ω Coax channel

Gear	Downlink [mVp-p]	Uplink [mVp-p]
1	250	500
2	350	500
3	250	500
4	500	250
5	500	250

- Example Comparing ~4Gbps Downlink TX Voltage solutions (Single Ended)
 - A-PHY G2 350mVp-p
 - FPD Link III (DS90UB953-Q1) 575mVp-p
 - GMSL (MAX9277-9281) 500mVp-p

Noise Immunity

- There is a major variance in the OEM EMC requirements, from those who aim for minimal noise immunity, to OEMs that apply stringent requirements to protect their system.
- A-PHY two profiles provide two noise immunity levels to accommodate this variance:
 - P1 has lower noise immunity, similar to other SERDES solutions and is applicable for G1 and G2 (optional G3).
 - P2 has very high noise immunity based on MIPI Alliance analysis of expected noise level for the car lifetime period.
- MIPI conducted multiple tests in an independent lab evaluating the noise levels and shielding effect degradation after mechanical stress and aging.
 - The results helped evaluate the different available technologies.
 - The research continues as part of MIPI A-PHY SG activities.

mipi alliance

Characteristics of RF Ingress Test

Test Conditions

Cable: Two types of Dynamics Coax cables in length of 2m and 15m

Lab Conditions:

mipi^{alliance}

Bending Fatigue & Temperature Cycling Test

Mechanical condition	Bending angle	180°
	Bending diameter	60 mm
	Bending Speed	10 times/min
	Weight load	3 N (~0.3kgf)
Temperature condition	Temp. cycle	See below fig.
	Temp. range	-25~25~105°C
Total nur	nber of bending	36000 times
Total time		Roughly 72 hours

Screening Attenuation Test Result

Noise Immunity Levels

Interference	P1 [mVpeak]	P2 [mVpeak]	Note
RF Ingress	5	40	Based on the ALSE method ISO 11452-2, CW/AM/PM modulation scheme
Bulk Current Injection	21	40	Based on ISO 11452-4, CW/AM modulation scheme
Fast Transient	15	150	Based on ISO7637-2/3, with modifications for higher frequency pulses

Notes:

- Noise levels are defined at the Receiver pads when using the specified typical worst-case cable
- P2 limits are in line with similar results shown in IEEE research paper: <u>https://ieeexplore.ieee.org/document/8825296</u> (Requires IEEE member access)
- 40mVpeak corresponds to 89dBuV RMS

Functional Safety

- A-PHY packets are end-to-end protected as recommended in ISO-26262:2018:
 - CRC-32 for each packet, providing a Hamming-Distance of more than 3.
 - Message Counter that is 8 bits wide.
 - Timeout monitoring is fulfilled by the Keep-Alive function.
- The above measures are necessary to argue a high diagnostic coverage for a communication bus, per *Table D.6* in ISO 26262-5:2018
- All other functional safety features necessary in order to fulfill the required system-level safety goal with ASIL are expected to be managed by upper layers.

A-PHY Port

- A-PHY Port mandatory Baud Rates: 2GBaud or 4GBaud
- A-PHY Source Port shall supply the clock, and A-PHY Sink Port shall receive it.
- MIPI A-PHY refers to TPA and TPB throughout the specification for clear interoperability and testability

Mode Of Operations

- Same state machine to A-PHY Source and Sink
- State transition may be triggered by:
 - Internal mechanism
 - Local host

alliance

- Remote controller
- All changes are reported to the local system
 - The local system will take any needed decisions based on the provided information
- Some activities are "automatic" and do not require local system intervention

PHY Layer

- Unified structure to reduce complexity
- Shared 8B/10B PCS for G1/G2 and Uplink
- RTS Sub-Layer
 - Manage Data Pacing and buffering
 - Assign Message Counter (MC) and CRC
 - P2 the retransmission process for A-Packets that are erroneous or that are not received
- PCS Sub-Layer
 - Specifies the conversion of Data Link Layer A-Packets into PHY Symbols
 - In P2, PCS also handles the JITC^(*) Re-Training
- PMD Sub-Layer

liance

 Defines the electrical specifications and the physical medium

RTS - Time Bounded Local PHY Level Retransmission

- Local Retransmission (RTS) mechanism is used in order to:
 - Recover damaged packets due to the effect of large in-car electrical transients which create long bursts of errors
 - Recover damaged packets due to instant attack of yet uncancelled large NBI which create long bursts of errors
 - Ensure steady link throughput to enable seamless higher layers operation even at extreme PHY operation points

RTS - Time Bounded Local PHY Level Retransmission

alliance

- Time Bounded
 - Retransmission is attempted only within predefined
 "Overall Delay" (e.g. ~6µS @G5)
- Local PHY Level
 - Transparent to upper layers
 - Happens within a single A-PHY Hop
- Dynamically Modulated
 - Retransmitted packets have better error resistant data payload Sub-Constellation
- Highly Reliable
 - PER (Packet Error Rate) < 10⁻¹⁹
- Highly Resilient
 - Overcome thousands symbols-long error bursts
 - Multiple 10s of mVs, instantly attacking, NBI Peak
- Low Overhead
 - Overall PHY + Link < 10% → 90% Net Data rate</p>

Link Layer

iance

- The A-PHY Data Link Layer is a protocol agnostic layer that performs scheduling, prioritization and forwarding of A-Packets.
- Each Protocol Adaptation Layer has at least one APPI connection to the A-PHY Data Link Layer.
- A-PHY Data Link Layer may be connected to multiple Protocol Adaptation Layers using a single Local Function.
- The A-PHY Data Link Layer may have a single A-PHY Network Function connected to it, or multiple A-PHY Network Functions

Link Layer

The A-PHY Data Link Layer enables A-Packet:

- Forwarding
- Prioritization
- Duplication
- Scheduling

APPI – A-PHY Protocol Interface

- Based on MIPI current PPI (PHY Protocol Interface) for D-/C-PHY
- Simplified normative signal interface of A-PHY with protocol layers
- Flexible data width and clock speed

lliance

 Easy migration for higher speeds in next generation

Concluding Thoughts

- In-vehicle architecture is rapidly evolving . . .
- Increased focus on surround sensor applications for ADAS / autonomous driving . . . Best served by dedicated high-speed asymmetric interfaces from sensors to ECU.
- Standardization important for economies of scale, lower cost & greater capabilities.
- The native MIPI protocols (CSI-2, DSI-2, I3C, others, available in billions of devices) with A-PHY deliver enormous benefit to the automotive industry . . . performance, cost, noise immunity, and long-term EBOM reduction via elimination of interface bridges.
- The MIPI solution is being developed to **meet the broadest spectrum** of automotive industry needs . . . with anticipated SOP as early as 2024.

Additional Resources

Resources

alliance

More information can be found at:

- MIPI Alliance Completes Development of A-PHY v1.0, an Industry-Standard Long-Reach SerDes Physical Layer Interface for Automotive Applications (Press release, June 2020)
- MIPI Alliance rises to data-transport challenge (Article, AVT, April 2020)
- Advancing In-Vehicle Connectivity for ADAS and Other Automotive Applications (Webinar, March 2020)
- <u>A Look Under the Hood at MIPI CSI-2 and MIPI DSI-2 in Automotive</u> (Blog, January 2020)
- MIPI Automotive & A-PHY Update (DevCon presentation, October 2019)
- MIPI Alliance Advances Activities for ADAS, ADS and Other Automotive Applications (Press release, October 2019)
- <u>Automotive Applications Drive MIPI A-PHY Development</u> (Blog, May 2019)

Other Resources

<u>A-PHY specification</u>
 <u>page</u>

