

IF IT'S NOT MIPI, IT'S NOT MOBILE

A Deep Dive into MIPI Debug for I3CSM

1 © 2021 MIPI Alliance, Inc.

Webinar Agenda

- Overview of MIPI Debug for I3C
- Network Adaptors
- Debug Common Command Codes (CCCs)
- Session Management and Debug Resets
- I3C In-Band Interrupts for Debug Events
- Debug Ecosystem
- Conclusions

A Deep Dive into MIPI Debug for I3CSM

Matthew Schnoor Intel Corporation MIPI Debug Working Group

3 © 2020 MIPI Alliance, Inc.

About MIPI Debug for I3C

Enables new debug interface standard, where existing interface solutions (e.g., JTAG/cJTAG, I²C, UART) are falling short

- Enables debug of multiple components on the board
- Debug and test system (DTS) can attach to external pins, yet still use the application processor and modem as DTS
- Must work if application processor is powered down (e.g., low power state)

MIPI Debug for I3C Key Features

- Uses core capabilities of MIPI I3C[®] or MIPI I3C BasicSM
- Allows dedicated or shared bus topologies
- Handles debug communication over defined byte-oriented streaming interface ports that can support different protocols
- Allows the target system (TS) to expose multiple debug interfaces/ports (referred to as Network Adaptors) from a single physical connection
- Allows the debug and test system (DTS) to send broadcast or directed action requests (e.g., halt, reset)
- Allow the TS to send event indications via IBIs (e.g., triggers, requests)

Conceptual System Diagram

MIPI Debug WG Functional Layering Diagram

Debug for I3C Functional Diagram

6 © 2021 MIPI Alliance, Inc.

Conceptual Target System Diagram

Network Adaptor

- A mechanism used for communicating with debug functions within the TS
- Contains either an Inbound data pipe, an Outbound data pipe, or both
 - Accessed via I3C Private Write and Private Read transfers
- Mapped to a single instance of a debug function with a particular protocol
 - Maximum 16 instances
 - Each Network Adaptor does not have to use a unique protocol

Supported Network Adaptor Protocols

Protocol	Direction	Details
SneakPeek Protocol (SPP)	Inbound & Outbound	Used for debug communication to a SneakPeek Command Engine. Bi- directional transfer of blocks of bytes (SPTBs) formatted to TinySPP
Trace Wrapper Protocol (TWP)	Outbound	Used for trace data output from trace infrastructure. Uni-directional transfer of a stream of bytes formatted to TWP
System Trace Protocol (STP)	Outbound	Used for trace data output from a System Trace Macrocell. Uni- directional transfer of a stream of bytes formatted to STP
Simplified Address- Mapped Protocol (SAM)	Inbound & Outbound	Used for communication with simple address-mapped access to TS resources
UART	Inbound & Outbound	Used for communication with character-oriented software agents such as <pre>scanf()/printf()</pre> , or a GDB monitor. Bi-directional transfer of bytes
Implementation- Defined	Inbound & Outbound	Implementation-defined function not described in this specification

Example Implementation of Network Adaptors

Protocol	Direction	Details
SneakPeek Protocol (SPP)	Inbound & Outbound	Used for debug communication to a SneakPeek Command Engine. Bi-directional transfer of blocks of bytes (SPTBs) formatted to TinySPP

SPP provides a richer address-mapped mechanism for read+write transactions, to replace dedicated interfaces (such as JTAG).

Each **SneakPeek Transfer Block** (SPTB) is a single I3C Private Write or Private Read transfer.

Reference: https://www.mipi.org/specifications/spp

12 © 2021 MIPI Alliance, Inc.

13 © 2021 MIPI Alliance, Inc.

Protocol	Direction	Details	
Trace Wrapper Protocol (TWP)	Outbound	Used for trace data output from trace infrastructure. Uni- directional transfer of a stream of bytes formatted to TWP	

TWP enables trace data output from multiple trace sources.

TWP Frames can be spread across one or more I3C Private Read transfers.

Reference: https://www.mipi.org/specifications/twp

DTS \leftarrow TS

15 © 2021 MIPI Alliance, Inc.

Sr/P

Sr/P

Protocol	Direction	Details
System Trace Protocol (STP)	Outbound	Used for trace data output from a System Trace Macrocell. Uni-directional transfer of a stream of bytes formatted to STP

STP enables trace data output from application-specific trace protocols

STP Packets can be spread across one or more I3C Private Read transfers

Reference: https://www.mipi.org/specifications/stp

mipialliance

17 © 2021 MIPI Alliance, Inc.

Network Adaptor Details: SAM

Protocol	Direction	Details
Simplified Address- Mapped Protocol (SAM)	Inbound & Outbound	Used for communication with simple address-mapped access to TS resources

SAM provides a simple address-mapped mechanism for read+write transactions, intended for register or memory access.

SAM commands can be GET, SET, READ or WRITE.

- SET + WRITE commands use one I3C Private Write.
- GET + READ commands use "Write-then-Read" semantics: one I3C Private Write followed by one I3C Private Read.

Network Adaptor Details: SAM

SAM SET or WRITE command example: DTS \rightarrow TS

mipi alliance

Debug Common Command Codes (CCC)

Defined CCCs specifically for use by the debug logic:

- **DBGOPCODE** Direct CCC (0xD7)
 - Request a particular operation of a given Network Adaptor that is part of the TS.
 - Can be Write only, or Write-then-Read, or both (per opcode)
- **DBGACTION** Direct (0xD8) or Broadcast (0x58)
 - Initiate one or more particular debug actions on a single TS (Direct) or all TS instances (Broadcast) on the I3C bus

Debug Common Command Codes (CCC)

• **DBGOPCODE** – Direct CCC (0xD7) opcodes:

Opcode	Format	Purpose
CAPABILITIES	Read only (Write-then-Read)	Read Debug for I3C version and capabilities
CFG	Write / Read	Configure polling vs. interrupts
START_NA	Write / Read	Network Adaptor start session (and status)
STOP_NA	Write / Read	Network Adaptor stop session (and status)
FIFO_THRESHOLD	Write / Read	Network Adaptor FIFO threshold settings
FIFO_ACTION	Write / Read	Network Adaptor FIFO other actions
SELECT	Write only	Select Network Adaptor
REPORT_ERROR	Write only	Inform Network Adaptor of received error

mipi alliance

Debug Common Command Codes (CCC)

- **DBGACTION** Direct (0xD8) or Broadcast (0x58)
 - Build a set of actions, in continuous CCC framing

Value	Name	Purpose
0x00	DBGRST	Debug Reset
0x01	STARTSET	Start a set of actions
0x02	EXECSET	Execute the set of actions
0x03 – 0x7F	Reserved	-
0x80 – 0xFF	IMPDEF	Implementation defined

Network Adaptor Session Management

alliance

Concept of Session Management

- Each Network Adaptor is managed by its internal state machine
- DTS can start/stop transactions by using DBGOPCODE CCC
- Specific meanings of TS state transitions will depend on the Network Adaptor type.

Debug Resets

• How to reset Debug logic in TS?

DBGACTION CCC with 'DBGRST' value 0x00

or

RSTACT CCC (w/ Defining Byte 0x03) followed by I3C Target Reset Pattern

Debug Resets and Layers

Mechanism:

Mechanism:

• Target Reset of I3C

- DBGACTION CCC DBGRST Action (I3C v1.0 or later)
- Target Reset with RSTACT Defining Byte of 0x03 (I3C v1.1 or later)

Debug In-Band Interrupts

Defined three mandatory data byte (MDB) identifiers specifically for debug events:

- **DBGSTATUS** (MDB = 0x5C) Used to indicate a change in status
 - e.g., FIFO threshold met, session stopped, processor halted
- **DBGERROR** (MDB = 0x5D) Used to indicate an error condition
 - e.g., I3C transport layer error or an error in the Network Adaptor
- DBGDATAREADY (MDB = 0xAD) Used to indicate data is ready in a given outbound FIFO
 - A specific Pending Read Notification for debug data

Debug In-Band Interrupts (example)

28 © 2021 MIPI Alliance, Inc.

mipialliance

Debug Ecosystem Components

• I3C Target interface extensions

- Implementing support for Debug CCCs, IBIs and connection to debug functions via Network Adaptors
- I3C Controller interface to DTS Host
 - MIPI I3C HCISM available for a standard Host Controller
 - USB-IF Device Class standard is in development...
- Debug connectors that include I3C serial pins
 - Not yet defined, stay tuned...

Conclusions

- MIPI I3C[®] provides a scalable, multi-mastering debug interface that can connect power-managed components on a platform.
 - It meets newer requirements/use cases that legacy interfaces (e.g., JTAG/cJTAG, I²C, UART) do not.
- The MIPI Debug for I3C specification extends the I3C bus interface for debug:
 - Builds on the core I3C capabilities, including two wires, hot-join, IBI, multidrop, broadcast messaging and multi-mastering
 - Adds debug/test-specific CCCs and standardizes the data exchange mechanisms

For more information...

- MIPI Alliance website: <u>http://mipi.org</u>
- MIPI Debug WG page: <u>https://www.mipi.org/specifications/debug</u>
- MIPI Architecture Overview for Debug whitepaper: <u>https://www.mipi.org/sites/default/files/mipi_Architecture-Overview-for-Debug_v1-2.pdf</u>
- MIPI I3C page: <u>https://mipi.org/specifications/i3c-sensor-specification</u>
- MIPI Debug for I3C page: <u>https://mipi.org/specifications/debug-i3c</u>

Questions and Answers

Thank you!

34 © 2020 MIPI Alliance, Inc.

Backup Slides

Network Adaptors: Key Differences

Capability	SneakPeak (TinySPP)	SAM	UART
Separate debug functions per Adaptor	Up to 8	Up to 16	1
Function discovery and identifiers	Yes	Yes	No
Function handling	Multiple methods	Address/Data only	N/A
Addressable space	64-bit	32-bit	N/A
Commands provided	Rd, Wr, Wr+Rd, Loops, Triggers	Rd, Wr	N/A
Largest transfer size (bytes)	2^7 - 1	2^16 - 1	N/A
Address pointers (per function)	Yes	Optional	N/A
Many more advanced capabilities	Yes	No	No

Debug Ecosystem

- DTS connections via USB
 - Developing new USB-IF Device Class for I3C Controller
 - Work is in progress...

