MIPI RFFE v2.0 Webinar:
An Overview of New Features and Implementation Benefits

Jim Ross, Skyworks Solutions - Chair RFFE WG
John Oakley, Intel – Vice-chair RFFE WG

February 17, 2015
MIPI Alliance: A Brief Introduction

Peter B. Lefkin
Managing Director
About MIPI Alliance

• 264 Members (as of Jan. 23, 2015)
• 45+ specifications and supporting docs
• We drive mobile and mobile-influenced interface technology through the development of hardware and software specifications
• We work globally and collaboratively with other standards bodies to benefit the mobile ecosystem
MIPI Alliance Member Ecosystem

- Device OEMs
- Semiconductor Companies
- Software Providers
- Application Processor Developers
- Consumer Electronics – Camera, Tablet, PC/Laptop, Peripherals
- Test Equipment Companies
- Test Labs
- IP and VIP Providers
- Handset Manufacturers
Active MIPI Alliance Working Groups

- Analog Control Interface
- Battery Interface
- Camera
- Debug
- Display High Speed Synchronous Interface
- Low Latency Interface
- Low Speed Multipoint Link (New - SoundWire℠)
- Marketing
- PHY (C / D / M)
- Reduced Input Output (RIO) (New)
- RF Front-End (RFFE℠)
- Sensor / I3C℠ (New)
- Software (New)
- Technical Steering Group
- Test
- UniPro℠
Recent Announcements

- 05 Nov 2014 - MIPI Alliance Introduces Sensor Interface Specification for Mobile, Mobile-Influenced and Embedded-Systems Applications

- 09 Oct 2014 - MIPI Alliance Introduces MIPI SoundWire℠, a Comprehensive Audio Interface for Mobile and Mobile-Influenced Devices
The Future of MIPI – Beyond Mobile

• Mobile influences everything

• Everything gets faster, smaller and lower power
 – MIPI will continue to evolve specs to take advantage of the evolution of technology in mobile devices
MIPI RFFE v2.0 Webinar:
An Overview of New Features and Implementation Benefits

Jim Ross, Skyworks Solutions - Chair RFFE WG
John Oakley, Intel – Vice-chair RFFE WG

February 17, 2015
MIPI RFFE Overview Agenda

- MIPI RFFE v1.x (v1.00.00 & v1.10)
 - What is RFFE?
 - Key Features

- Why RFFE v2.0?
 - Key New Features
 - Multiple devices can control the bus (Multi-Master)
 - Additional bus operating frequencies (Extended Frequencies)
 - Additional read-back methods (Synchronous Read)
 - Support for interrupts (Interrupt-Capable Slave functionality)
 - Additional Registers for unified control (New Reserved Registers and functions)

- MIPI RFFE Roadmap v2.1?
 - Items up for consideration?
What is RFFE?

RFFE Introduction
• RFFE WG is the RF Front-End Control Working Group within the MIPI Alliance
 – MIPI System Diagram
• RFFE WG has specified a two-wire control bus to be used (but not limited to) in controlling various RF Front-End devices (e.g. PAs, Filters, Switches, Antennas etc.)
• Work started Sep 2008 and was developed on an accelerated schedule.
RFFE in the RF Front-End

The RF is essential in conveying the communication over radio waves

- The RF performance and functionality increases the devices versatility by
 - better coverage
 - higher throughput
 - better call connectivity
 - providing international roaming
 - dual or multi SIM configurations
 - providing improved battery life
- Complex RF solutions incorporate a multitude of customized components in the RF Front-End
- Standardized solutions required for control
- RFFE is broadly adopted by the industry being the excellent solution for controlling the RF Front-End
RFFE Control Bus Overview

RFFE Technical Overview

Two signals (+ VIO):
• Master initiated SCLK
• Bi-directional SDATA

• RFFE key pillars for the design are to:
 – Minimize wiring effort in front ends of mobile terminals
 – Minimize pin count
 • Many Frontend devices are pin limited
 • great savings in pin count at the RFIC.
 – Ease and optimize control flow
RFFE v1.x Overview

- **Electrical & Digital Details**
 - Up to a 26 MHz bus speed.
 - Supports up to an address space of 16 bits.
 - Contains parity bits for error checking.
 - Common voltage reference defined for the interface.

- **Flexible Bus Configuration**
 - One master system, which eliminates arbitration for the bus.
 - Slave devices are very configurable.
 - Slaves support an optional programmable Unique Slave ID.
 - Supports user defined group IDs for write commands.

- **Multiple Message types**
 - Single byte and multi-byte read and write commands are supported.
 - Supports broadcast messages over the bus to multiple slave devices.
 - An optional trigger feature to solve potential timing issues.
 - Supports a command initiated soft reset.

RFFE v1.x

- 1.8 or 1.2 VIO Support
- Many Message Types
- 1 Master
- Triggered Messaging
- Bidirectional Serial Link
- Programmable IDs
- Broadcast Messages
- Up to 15 Slaves
- Simple Slaves
- Soft Reset
- Speeds up to 26 MHz
- Parity for Error Checks
RFFE Register Mapping

Register Space:
- 0x00 – 0x1F (Basic)
- 0x20 – 0xFF (Extended)
- 0x100 – 0xFFFF (Extended Long)

Command Sequence Types
RFFE Control Bus Overview

Basic Register Write and Read Commands

<table>
<thead>
<tr>
<th>Description</th>
<th>SSC</th>
<th>Command Frame</th>
<th>Data Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register Write</td>
<td>1</td>
<td>SA[3:0] 0 1 0 0 0 0 0 0 P</td>
<td>Data[7:0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P 1 1 1 1 1</td>
<td>P</td>
</tr>
<tr>
<td>Register Read</td>
<td>0</td>
<td>SA[3:0] 0 1 1 0 0 0 0 0 P</td>
<td>Data[7:0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P 1 1 1 1 1</td>
<td>P</td>
</tr>
</tbody>
</table>

The components of a RFFE message.

- **SSC : Start Sequence Condition**
- **Command Frame**
 - SA[3:0] = Slave Address addressing 15 slaves, SA=0 will broadcast to ALL slaves
- **Parity calculated & inserted for each Frame in a Command Sequence**
- **Data or Address Frame**
- **Bus Park Cycle**
Trigger Registers

This is an illustration of how Triggers can work as defined by the MIPI RFFE Specification. In this illustration all the Triggers are enabled – in other words no Trigger Mask bits are set.

<table>
<thead>
<tr>
<th>RFFE COMMAND</th>
<th>Write to Register A</th>
<th>Write to Register B</th>
<th>Set Trigger 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0A-12</td>
<td>7-0B-34</td>
<td>7-1C-01</td>
<td></td>
</tr>
<tr>
<td>Shadow A register</td>
<td>0xXX</td>
<td>0x12</td>
<td></td>
</tr>
<tr>
<td>Register A</td>
<td>0xXX</td>
<td>0x12</td>
<td></td>
</tr>
<tr>
<td>Shadow B register</td>
<td>0xXX</td>
<td>0x34</td>
<td></td>
</tr>
<tr>
<td>Register B</td>
<td>0xXX</td>
<td>0x34</td>
<td></td>
</tr>
</tbody>
</table>
Trigger Registers

In this illustration only Triggers 1 & 2 are enabled. Since the Trigger Mask for Trigger 0 is set, Trigger 0 is disabled and thus data is written directly to the configuration registers, effectively bypassing the shadow registers.

<table>
<thead>
<tr>
<th>RFFE COMMAND</th>
<th>Write to Register A</th>
<th>Write to Register B</th>
<th>Set Trigger 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-0A-12</td>
<td>0XX</td>
<td>0x12</td>
<td></td>
</tr>
<tr>
<td>7-0B-34</td>
<td>0XX</td>
<td>0x12</td>
<td></td>
</tr>
<tr>
<td>7-1C-01</td>
<td>0XX</td>
<td>0x34</td>
<td></td>
</tr>
<tr>
<td>0XX</td>
<td>0XX</td>
<td>0x34</td>
<td></td>
</tr>
<tr>
<td>0XX</td>
<td>0XX</td>
<td>0x34</td>
<td></td>
</tr>
</tbody>
</table>
MIPI RFFE v2.0
Why was RFFE v2.0 developed?

• Background for the RFFE v2.0 development
 – RFFE v1.0 development was on a very aggressive schedule
 • Thus only core features were targeted for this release
 • Other features were intentionally left for later development and inclusion
 – After RFFE v1.0 and v1.1 were released, the WG turned its attention towards addressing potential improvements and extensions to RFFE
 • Forward-looking features
 • Features list was developed by the WG: Inputs from WG members, and from multiple surveys (MIPI and IWPC)
 • WG down-selected features to be included in v2.0 prior to detailed development
 – Backward-compatibility with RFFE v1.x was of prime importance in selecting and developing the new features
 • An RFFE v1.x Slave will still work in RFFE v2.0 systems, although primarily to only v1.x features.
 – RFFE v2.0 expands and improves upon the capabilities provided by RFFE v1.x, and provides a solid foundation for the future of RF front-end architectures.
What’s New in MIPI RFFE v2.0?

Key New and Improved Features

• Electrical & Digital Details
 – Extended Frequencies – increased command sequence bandwidth capabilities
 – Synchronous Read introduction – Allows for a wider range of bus loading by allowing more time for data propagation on the bus by Slaves, and also enables Extended Frequencies

• Flexible Bus Configuration
 – Multi-Master - supporting Carrier Aggregation (CA) system architectures

• Multiple Message types
 – Interrupt-Capable Slave functionality – quicker response opportunities for Slave Devices to report to Master(s)
 – New Reserved Registers and functions – Common function register locations easing hardware and software development

Copyright © 2015 MIPI Alliance. All rights reserved.
MIPI RFFE v2.0: Multi-Master

Requirements driving the RFFE v2.0 Multi-Master Feature:

- Monitoring of Alternate Bands
- Carrier Aggregation
- Transceiver Platform Architecture

- Only one Bus Owner Master (BOM) at any one time. Other Masters may monitor the bus.
- Arbitration (and associated timing uncertainties) avoided with scheme chosen.
- RFFE v2.0 Architectures May Remain Single Master
MIPI RFFE v2.0: Extended Frequencies

Extended Frequency Range **DOUBLES** the number of Command Sequences that can be transferred on the bus in a given amount of time.

- Double the standard rate exists in the “forward” direction, i.e. Master-to-Slaves for Write types of Command Sequences where the Master (BOM) is driving SDATA.
 - The “forward” direction is typically the most timing-critical control path in an RF Front-End, and also accounts for a majority of bus traffic
- Due to timing limitations in the read-back path, Extended Frequency is not possible when the BOM is not driving SDATA
- However, the RFFE 2.0 sRead feature allows virtually all Slaves to utilize Full-Speed in the existing Standard Frequency Range, thus achieving higher performance in the “reverse” path as well
MIPI RFFE v2.0: Interrupt-Capable Slaves (ICS)

- In RFFE v1.x the only way for a Slave to notify the Master of some condition or communicate back to the Master is through a Read Command Sequence (which may be *initiated only by the Master*).
- ICS (Interrupt-Capable Slave) features were developed with the following guidelines:
 - Feature needed to be In-Band: No additional signals or wires were desired.
 - (BOM) Master needs to retain control of the bus at all times to ensure that bus timing may remain deterministic.
 - Provide the possibility of as close to a “real-time” response as possible.
- ICS is an optimized multiple-device polling feature:
 - ICS feature is not a “traditional” interrupt - but rather a quick polling method.
 - One new RFFE Cmd Seq created for ICS; majority of ICS ops use existing CSs.
 - ICS supports up to 16 different interrupts on an RFFE bus (with up to 4 / Slave).
MIPI RFFE v2.0: Interrupt-Capable Slaves (ICS)

Configuration Phase
[Only needed at ICS set up or configuration changes]

Quick Interrupt Scan
(Of All ICS Enabled Slaves)
[Optimized for Time-Minimized Polling of Any/All Interrupt Requests]

Identification / Servicing / Clearing Phase
[Used only when Interrupts must be Identified, Serviced, and/or Cleared]
MIPI RFFE v2.0: New Reserved Registers

RFFE v1.x
- Register (bits 7:0)
 - PM_TRIG
 - PRODUCT_ID
 - MANUFACTURER_ID
 - MAN_ & _USID

RFFE v2.0
- Register (bits 7:0)
 - PM_TRIG
 - PRODUCT_ID
 - MANUFACTURER_ID
 - MAN_ & _USID
 - EXT_PRODUCT_ID
 - REV_ID
 - GSID0-GSID1
 - UDR_RST
 - ERR_SUM
 - INT_MAP0-1
 - INT_MAP2-3
 - INT_EN0
 - INT_EN1
 - INT_CLR0
 - INT_CLR1
 - BUS_LD

NEW REGISTERS
- User-Defined Extended Product & Revision ID
- GSID register defined
- Error Logging & Software Reset (retain U/GSID, Triggers, etc)
- Interrupt Maps, Enables, and Clears
- Slave SDATA Bus Load
MIPI RFFE Roadmap v2.1?
MIPI RFFE v2.1: Future Enhancements

What comes after RFFE v2.0?

- The Working Group has begun to gather ideas for the next release and some of these ideas are outlined below

 - **Electrical & Digital Details**
 - Longer Trace Lengths
 - RFFE over M.2 Connector/Socket

 - **Flexible Bus Configuration**
 - Potential Extension of the Manufacturer ID Bit Field

 - **Multiple Message types**
 - Optional extensions to the Master Write (& Read?) CS(s)
 - Software Considerations

- The WG welcomes additional members and contributions!
MIPI RFFE Documents and Website
MIPI RFFE: Documents

RFFE Specification and Supporting Documents (available to all MIPI Members)
- https://members.mipi.org/wg/All-Members/home/approved-specs#RFFE

MIPI® Specification for RF Front-End Control Interface (RFFE℠) v1.10:
- Specification: Version 1.10 – November 2011
- Application Note: Version 1.10 – November 2011
 - Usage examples (Triggers, Group Slave IDs, Resolving USID Conflicts, etc.)
 - FAQs
- PICS: Version 1.10 – October 2011
 - Protocol Implementation Conformance Statement, Checklist for vendors

MIPI® Specification for RF Front-End Control Interface (RFFE℠) v2.0:
- Application Note: Version 2.0 – February 2015
- FAQ: Version 2.0 – February 2015
- Conformance Test Specification (CTS): Version 2.0 – (estimated release: 3Q15)
MIPI/RFFE Website

- **Questions to the WG?** Contact PM: rob.anhofer@mipi.org
- **Questions from Press/other?** Contact Marketing: jennifer.mcaleer@mipi.org
- Public website – RFFE WG: http://mipi.org/working-groups/rf-front-end
- MIPI Contributor and Board Members are welcome to join the WG:
 - Member website (request a member login): https://members.mipi.org/site/login
 - Access to WG mail reflector and discussions, file repository, calendar, meeting agendas and minutes, schedules and access to Bugzilla change request system
 - Weekly WG meetings: Wednesday’s @ 8:30am PST / 11:30am EST / 17:30 CET (2hr)
 - Next RFFE WG conference call is February 25, 2015 (no call Feb-18)
 - RFFE WG calendar: https://members.mipi.org/wg/RF-FE/calendar
 - RFFE WG dashboard: https://members.mipi.org/wg/RF-FE/workgroup
- Next RFFE WG F2F Meeting:
 - Seattle, USA: Tuesday March 10 to Thursday March 13, 2015
 - Includes MIPI Open Day session with RFFE presentation and Q&A session